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Abstract

A geometric graph is a combinatorial graph, endowed with a geometry that is inherited from its embedding in a Euclidean space.
Formulation of a meaningful measure of (dis-)similarity in both the combinatorial and geometric structures of two such geometric
graphs is a challenging problem in pattern recognition. We study two notions of distance measures for geometric graphs, called
the geometric edit distance (GED) and geometric graph distance (GGD). While the former is based on the idea of editing one graph
to transform it into the other graph, the latter is inspired by inexact matching of the graphs. For decades, both notions have been
lending themselves well as measures of similarity between attributed graphs. If used without any modification, however, they fail
to provide a meaningful distance measure for geometric graphs—even cease to be a metric. We have curated their associated cost
functions for the context of geometric graphs. Alongside studying the metric properties of GED and GGD, we investigate how the
two notions compare. We further our understanding of the computational aspects ofGGD by showing that the distance isNP-hard
to compute, even if the graphs are planar and arbitrary cost coefficients are allowed.

1 Introduction
Graphs have been a widely accepted object for providing structural representation of patterns involving relational properties. One
of the most important aspects of such representation is that the problem of pattern recognition becomes the problem of quantifying
(dis-)similarity between a query graph and a model or prototype graph. The problem of defining a relevant distance measure for
a class of graphs has been looked into for almost five decades now and has a myriad of applications including chemical structure
matching, fingerprint matching, face identification, and symbol recognition. Depending on the class of graphs of interest and the
area of application, several methods have been proposed. If the use case requires a perfect matching of two graphs, then the problem
of graph isomorphism can be considered [5]; whereas, subgraph isomorphism can by applied for a perfect matching of parts of two
graphs. These techniques are not, however, lenient with (sometimes minor) local and structural deformations of the two graphs.
To address this issue, several alternative distance measures have been studied. We particularly investigate edit distance [6, 8]
and inexact matching distance [3]. The former is based on partially matching two graphs through an inexact matching relation
(Definition 2), while the latter makes use of elementary edit transformations (such as deletion, insertion, relabeling of vertices and
edges), and the distance is defined as the minimum cost of transforming one graph to the other. Although these distance measures
have been battle-proven for attributed graphs (i.e., combinatorial graphs with finite label sets), the formulations seem inadequate
in providing meaningful similarity measures for geometric graphs.

A geometric graph belongs to a special class of attributed graphs having an embedding into a Euclidean space R𝑑 , where the
vertex and edge attributes are inferred from the Euclidean locations of the vertices and Euclidean lengths of the edges, respectively.
In the last decade, there has been a gain in practical applications involving comparison of geometric graphs. Examples include
road-network or map comparison [1], detection of chemical structures using their spatial bonding geometry, etc. In addition, large
datasets like [7] are being curated by pattern recognition and machine learning communities.

Despite a rich literature on the matching of attributed graphs and a fair count of algorithms benchmarked by both the database
community and the pattern recognition community, most of the frameworks become untenable for matching geometric graphs.
They remain oblivious to the spatial geometry such graphs are endowed with, consequently giving rise to very artificial measures
of similarity for geometric graphs. This is not surprising at all—geometric graphs are a special class of labeled graphs after all! For
a geometric graph, the significant differences include:

(i) Edge relabeling is not an independent edit operation, but vertex labels dictate the incident edge labels.

(ii) Vertex relabeling amounts to its translation to a different location in the ambient space, and additionally incurs the cost of
relabeling of all its adjacent edges.
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1.1 Our Contribution
We study two distance measures, the geometric edit distance (GED) and geometric graph distance (GGD), in order to provide a
meaningful measure of similarity between two geometric graphs. For attributed graphs the corresponding distance measures are
equivalent as shown in [2, Proposition 1]. In contrast, we show in Section 2.3 they are not equivalent for geometric graphs.

We mention here the contribution of [4] for introducing GGD as well as discussing different definitions of edit distance in the
context of geometric graphs. The authors also prove certain complexity results for GGD, which we improve upon in this paper.

2 Two Distances for Geometric Graphs
A (finite) combinatorial graph𝐺 = (𝑉𝐺 , 𝐸𝐺) is called a geometric graph ofR𝑑 if the vertex set𝑉𝐺 ⊂ R𝑑 and the Euclidean straight-
line segments

{
𝑎𝑏 | (𝑎, 𝑏) ∈ 𝐸𝐺

}
intersect (possibly) at their endpoints. We denote by G(R𝑑) the set of all geometric graphs of

R𝑑 . Two geometric graphs 𝐺 = (𝑉𝐺 , 𝐸𝐺) and 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) are said to be equal, written 𝐺 = 𝐻, if and only if 𝑉𝐺 = 𝑉𝐻 and
𝐸𝐺 = 𝐸𝐻 . We make no distinction between a geometric graph 𝐺 = (𝑉𝐺 , 𝐸𝐺) and its geometric realization as a subset of R𝑑 ; an
edge (𝑢, 𝑣) ∈ 𝐸𝐺 can be identified as the line-segment 𝑢𝑣 in R𝑑 , and its length by the Euclidean length |𝑢𝑣 |.

2.1 Geometric Edit Distance (GED)
Given two geometric graphs 𝐺, 𝐻 ∈ G(R𝑑), we transform 𝐺 into 𝐻 by applying a sequence of edit operations. The allowed edit
operations and their costs are i) inserting (and deleting) a vertex costs nothing, ii) inserting (and deleting) an edge costs 𝐶𝐸 times
its length, and iii) translating a vertex costs 𝐶𝑉 times the displacement of the vertex plus 𝐶𝐸 times the total change in the length of
all its incident edges. Throughout the paper, we assume that the coefficients 𝐶𝑉 and 𝐶𝐸 are positive constants. In order to denote
a deleted vertex and a deleted edge, we introduce the dummy vertex 𝜖𝑉 and the dummy edge 𝜖𝐸 , respectively. While computing
edit costs, we follow the convention that |𝜖𝐸 | = 0, |𝑎 ± 𝜖𝑉 | = 0 for any 𝑎 ∈ R𝑑 , and (𝑢, 𝑣) = 𝜖𝐸 if either 𝑢 = 𝜖𝑉 or 𝑣 = 𝜖𝑉 .

An edit path from 𝐺 to 𝐻 is a sequence of allowed edit operations to transform 𝐺 into 𝐻. Note that we do not require for an
intermediate edit operation to yield a geometric graph. The set of all edits paths between 𝐺, 𝐻 ∈ G(R𝑑) is denoted as P(𝐺, 𝐻).
For any vertex 𝑢 ∈ 𝑉𝐺 (resp. edge 𝑒 ∈ 𝐸𝐺), we denote by 𝑃(𝑢) (resp. 𝑃(𝑒)) the end result after its evolution under 𝑃. If 𝑃 deletes
the vertex 𝑢 (resp. edge 𝑒), we write 𝑃(𝑣) = 𝜖𝑉 (resp. 𝑃(𝑒) = 𝜖𝐸 ). The cost, Cost(𝑃), of an edit path 𝑃 is defined to be the total cost
of the individual edits. Then GED(𝐺, 𝐻) is defined as cost of the least expensive edit path.

Definition 1 (Geometric Edit Distance). For geometric graphs 𝐺, 𝐻 ∈ G(R𝑑), their geometric edit distance is defined as

GED(𝐺, 𝐻) def
= inf

𝑃∈P(𝐺,𝐻 )
Cost(𝑃).

We prove that GED is, in fact, a metric in the space of geometric graphs without any isolated vertex. As also observed in [4],
the following example demonstrates that the distance may not be attained by an edit path, unless an infinite number of edits are
allowed: Consider 𝐺, 𝐻 ∈ G(R2), where 𝐺 has only one edge (𝑢1, 𝑢2) and 𝐻 has only one edge (𝑣1, 𝑣2) as shown in Figure 1. For
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Figure 1: Left: the edit path 𝑃𝑘 alternatively moves the left and right vertices of 𝐺 by distance 1/𝑘 . Consequently, GED(𝐺, 𝐻) =
2𝐶𝑉 . Right: The inexact matching 𝜋 between 𝐺 and 𝐻 has been shown to attain the same distance for GGD(𝐺, 𝐻).

any fixed 𝑘 ≥ 1, consider the edit path 𝑃𝑘 = {𝑜𝑖}2𝑘𝑖=1, where 𝑜𝑖 translates the left vertex of 𝐺 up by a distance 1/𝑘 and then 𝑜𝑖+1
moves the right vertex by the same distance for any odd 𝑖. So, for any 𝑖

Cost(𝑜𝑖) = 𝐶𝑉

1
𝑘
+ 𝐶𝐸

[√︁
(1/𝑘)2 + 12 − 1

]
= 𝐶𝑉

1
𝑘
+ 𝐶𝐸

1
𝑘2√︃

1
𝑘2

+ 1 + 1
, and therefore

GED(𝐺, 𝐻) ≤ Cost(𝑃𝑘) =
2𝑘∑︁
𝑖=1

Cost(𝑜𝑖) = 2𝐶𝑉 + 𝐶𝐸

2
𝑘√︃

1
𝑘2

+ 1 + 1

𝑘→∞−−−−−−−−−→ 2𝐶𝑉 .

Therefore, GED(𝐺, 𝐻) = 2𝐶𝑉 . However, there is no edit path that attains this cost.
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2.2 Geometric Graph Distance (GGD)
The definition of GED is very intuitive but not at all suited for computational purposes. Firstly, there could be infinitely many
locations a vertex is allowed to be translated to. Secondly, there are infinitely many edit paths between two graphs—even if the
vertices are located on a finite grid. The infinite search space makes the computation of GED illusive. As a feasible alternative
we study GGD. The definition is inspired by the concept of inexact matching first proposed in [3], and has been introduced for
geometric graphs in [4]. We follow the notation of [3] in order to define it. We first define an (inexact) matching.
Definition 2 (Inexact Matching). Let 𝐺, 𝐻 ∈ G(R𝑑) be two geometric graphs. A relation 𝜋 ⊆ (𝑉𝐺 ∪ {𝜖𝑉 }) × (𝑉𝐻 ∪ {𝜖𝑉 }) is called
an (inexact) matching if for any 𝑢 ∈ 𝑉𝐺 (resp. 𝑣 ∈ 𝑉𝐻 ) there is exactly one 𝑣 ∈ 𝑉𝐻 ∪ {𝜖𝑉 } (resp. 𝑢 ∈ 𝑉𝐺 ∪ {𝜖𝑉 }) such that (𝑢, 𝑣) ∈ 𝜋.

The set of all matchings between graphs 𝐺, 𝐻 is denoted by Π(𝐺, 𝐻). Intuitively speaking, a matching 𝜋 is a relation that
covers the vertex sets 𝑉𝐺 , 𝑉𝐻 exactly once. As a result, when restricted to 𝑉𝐸 (resp. 𝑉𝐺), a matching 𝜋 can be expressed as a map
𝜋 : 𝑉𝐺 → 𝑉𝐻 ∪ {𝜖𝑉 } (resp. 𝜋−1 : 𝑉𝐻 → 𝑉𝐺 ∪ {𝜖𝑉 }). In other words, when (𝑢, 𝑣) ∈ 𝜋 and 𝑢 ≠ 𝜖𝑉 (resp. 𝑣 ≠ 𝜖𝑉 ), it is justified to
write 𝜋(𝑢) = 𝑣 (resp. 𝜋−1 (𝑣) = 𝑢). It is evident from the definition that the induced map

𝜋 : {𝑢 ∈ 𝑉𝐺 | 𝜋(𝑢) ≠ 𝜖𝑉 } → {𝑣 ∈ 𝑉𝐻 | 𝜋−1 (𝑣) ≠ 𝜖𝑉 }
is a bijection. Additionally for edges 𝑒 = (𝑢1, 𝑢2) ∈ 𝐸𝐺 and 𝑓 = (𝑣1, 𝑣2) ∈ 𝐸𝐻 , we introduce the short-hand 𝜋(𝑒) := (𝜋(𝑢1), 𝜋(𝑢2))
and 𝜋−1 ( 𝑓 ) := (𝜋−1 (𝑣1), 𝜋−1 (𝑣2)).

Another perspective of 𝜋 is discerned when viewed as a matching between portions of 𝐺 and 𝐻, (possibly) after applying
some edits on the two graphs. For example, 𝜋(𝑢) = 𝜖𝑉 (resp. 𝜋−1 (𝑣) = 𝜖𝑉 ) encodes deletion of the vertex 𝑢 from 𝐺 (resp. 𝑣 from
𝐻), whereas 𝜋(𝑒) = 𝜖𝐸 (resp. 𝜋−1 ( 𝑓 ) = 𝜖𝐸 ) encodes deletion of the edge 𝑒 from 𝐺 (resp. 𝑓 from 𝐻). Once the above deletion
operations have been performed on the graphs, the resulting subgraphs of𝐺 and 𝐻 become isomorphic, which are finally matched
by translating the remaining vertices 𝑢 to 𝜋(𝑢). Now, the cost of thematching 𝜋 is defined as the total cost for all of these operations:

Cost(𝜋) =
∑︁

𝑢∈𝑉𝐺

𝜋 (𝑢)≠𝜖𝑉

𝐶𝑉 |𝑢 − 𝜋(𝑢) |

︸                     ︷︷                     ︸
vertex translations

+
∑︁
𝑒∈𝐸𝐺

𝜋 (𝑒)≠𝜖𝐸

𝐶𝐸

��|𝑒 | − |𝜋(𝑒) |
��

︸                        ︷︷                        ︸
edge translations

+
∑︁
𝑒∈𝐸𝐺

𝜋 (𝑒)=𝜖𝐸

𝐶𝐸 |𝑒 |

︸           ︷︷           ︸
edge deletions

+
∑︁
𝑓 ∈𝐸𝐻

𝜋−1 ( 𝑓 )=𝜖𝐸

𝐶𝐸 | 𝑓 |

︸              ︷︷              ︸
edge deletions

. (1)

Definition 3 (GGD). For geometric graphs 𝐺, 𝐻 ∈ G(R𝑑), their geometric graph distance is defined as

GGD(𝐺, 𝐻) def
= min

𝜋∈Π (𝐺,𝐻 )
Cost(𝜋).

2.3 Comparing GED and GGD
As we now have the two notions of distances under our belts, the question of how they compare arises naturally. We have already
pointed out that the the analogous notions for attributed graphs yield equivalent distances. To our surprise, they are not generally
equal for geometric graphs, as we demonstrate in the following example. Take two graphs𝐺, 𝐻 ∈ G(R), each having three vertices
and two edges connecting them as shown in Figure 2. More generally, in Proposition 4 we prove that GGD(𝐺, 𝐻) ≤ GED(𝐺, 𝐻).

−1 0 1 2 3 4 5 6

−1 0 1 2 3 4 5 6
𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

𝐺

𝐻

Figure 2: If 𝐶𝑉 = 𝐶𝐸 = 1, then GGD(𝐺, 𝐻) = 3 and GED(𝐺, 𝐻) = 5. For arbitrary 𝐶𝐸 and 𝐶𝑉 , the configuration can be easily
adjusted so that GGD(𝐺, 𝐻) < GED(𝐺, 𝐻).

Proposition 4. For any geometric graphs 𝐺, 𝐻 ∈ G(R𝑑), we have
GGD(𝐺, 𝐻) ≤ GED(𝐺, 𝐻).

Proof. Take an arbitrary edit path 𝑃 ∈ P(𝐺, 𝐻). Let us define the matching 𝜋 ∈ Π(𝐺, 𝐻) such that

𝜋
def
= {(𝑢, 𝑃(𝑢)) | 𝑢 ∈ 𝑉𝐺} ∪ {(𝑃−1 (𝑣), 𝑣) | 𝑣 ∈ 𝑉𝐻 }.

This definition of 𝜋 implies that 𝑃(𝑢) = 𝜋(𝑢) for all 𝑢 ∈ 𝑉𝐺 , 𝑃(𝑒) = 𝜋(𝑒) for all 𝑒 ∈ 𝐸𝐺 , and 𝑃−1 ( 𝑓 ) = 𝜋−1 ( 𝑓 ) for all 𝑓 ∈ 𝐸𝐻 .
Also, it follows from the definitions of the costs that Cost(𝜋) ≤ Cost(𝑃). The definition of GGD(𝐺, 𝐻) then implies that

GGD(𝐺, 𝐻) ≤ Cost(𝜋) ≤ Cost(𝑃).
Since 𝑃 is chosen arbitrarily, the definition of GED(𝐺, 𝐻) then implies the result. □
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3 Computational Complexity
In this section, we discuss the computational aspects of the GGD. We define the problem as follows.

Definition 5 (Problem GGD). Given geometric graphs 𝐺, 𝐻 ∈ G(R𝑑) and 𝜏 ≥ 0, is there a matching 𝜋 ∈ Π(𝐺, 𝐻) such that
Cost(𝜋) ≤ 𝜏?

In [4], the authors show Problem GGD isNP-hard for non-planar graphs, when arbitrary cost coefficients𝐶𝑉 , 𝐶𝐸 are allowed.
For planar graphs, however, itsNP-hardness is proved under the very strict condition that 𝐶𝑉 << 𝐶𝐸 . We prove a stronger result
that the problem is NP-hard, even if the graphs are planar and arbitrary 𝐶𝑉 , 𝐶𝐸 are allowed. Our reduction is from the well-
known 3-PARTITION problem. For non-planar graphs, we conjecture that for any 𝛼 > 1, an 𝛼-approximation is also NP-hard,
i.e, Problem GGD is generally APX-hard.

4 Discussions and Future Work
We have studied two notions for a similarity measure between geometric graphs. In addition to the metric properties of GED and
GGD, we also establish that the former is at least as large as the latter. However, it remains unclear if GED can be bounded from
above by a constant multiple of GGD. The hardness of GGD for planar graphs, also provokes the question of the hardness of its
polynomial-time approximation. Although we conjecture that the distance is evenNP-hard to approximate for dimension 𝑑 ≥ 3,
for planar graphs the possibility of approximating the GGD within a reasonable factor can be further investigated.
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