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1. Introduction

Algorithms based on persistent homology form the core of many methods in topological data analysis.
The standard approach is to compute a discrete representation of the persistent homology known as a barcode
that captures the underlying topology. Theoretical guarantees on such algorithms are then given using the
celebrated stability theory [3] which ensures that, for sufficiently good input data, the computed barcode will
be close to the underlying ground truth. This is a strong guarantee on the output that necessarily requires
strict conditions on the quality of the input data. If these conditions are not met, the algorithms provide no
guarantees at all.

We present an application of a new approach to topological data analysis (TDA) using persistent homology
with strong guarantees on the output even in the absence of strong sampling assumptions. Specifically, we
will apply the recently developed theory of sub-barcodes [5] to Lipschitz extensions. Given a sample of an
unknown Lipschitz function f , we give a simple algorithm for computing a sub-barcode of the barcode of f
in general metric spaces.

The goal is to approximate a barcode that is a sub-barcode of all possible Lipschitz functions
that agree with the input data.

The primary algorithmic technique used is to compute the so-called image persistence [6, 2] associated
with the sublevel sets of the maximum and minimum Lipschitz extensions of a sample. We will begin with
the necessary background on metric spaces, homology, persistence modules, and barcodes in Section 2. In
Section 3 we will review sub-barcodes, present the Lipschitz extension problem, and show how to approximate
a sub-barcode in general metric spaces using the (Vietoris-)Rips complex.

Figure 1. On the left, two functions are depicted: one is an upper bound and the other is
a lower bound on an unknown function f , shown on the right. The barcode of the inclusion
of the upper and lower bounds is a sub-barcode of Bf .

2. Background

We will assume that the input is defined in a metric space (X,d). A function f : X → R is c-Lipschitz
if for all x, y ∈ X, we have |f(x) − f(y)| ≤ cd(x, y). For ε > 0 let ballε(x) = {y ∈ X | d(x, y) < ε} denote
the metric ball centered at x ∈ X. A metric ball is said to be strongly convex if for each pair of points y, z
in its closure, there exists a unique shortest path in X between y and z whose interior is contained in the
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metric ball. For x ∈ X, let %X(x) be the supremum of the radii ε such that ballε(x) is strongly convex. The
strong convexity radius of X is defined as %X = infx∈X %X(x).

The distance of a point x ∈ X to a set S ⊆ X is defined as d(x, S) = infs∈S d(x, s). The Hausdorff
distance between two sets S, T ⊆ X is defined as dH(S, T ) = max

{
sups∈S d(s, T ), supt∈T d(S, t)

}
.

2.1. Homology. We will assume the reader is familiar with homology, and refer to Hatcher [7] for a full
treatment. Throughout, we will be using singular homology over a field k so that the homology groups
Hn(X) of a topological space X are vector spaces for all n ∈ N. We will write H(X) to refer to the homology
of X for any dimension n. For any continuous map f : X → Y , there is a corresponding linear map
H [f ] : H(X) → H(Y ). In particular, let H [X ⊆ Y ] denote the map in homology induced the inclusion of a
subspace X ⊆ Y .

2.2. Filtrations. A filtration is a nested family of topological spaces. In this work, a filtration will be
defined as a mapping F : R→ Top associating a topological space F (t) to each t ∈ R such that F (s) ⊆ F (t)
for all s ≤ t. There is a natural partial order on filtrations where F ↪→ G if and only if F (t) ⊆ G(t)
for all t ∈ R. Given a space X and a function f : X → R, the sublevel filtration of f is defined
Sub(f) =

{
f−1 ((−∞, t])

}
t∈R where f−1 ((−∞, t]) =

{
x ∈ X | f(x) ≤ t

}
. The set of real-valued functions

X → R forms a partially ordered set where g ≥ f if g(x) ≥ f(x) for all x ∈ X. It follows from these
definitions that g ≥ f implies that Sub(g) ↪→ Sub(f).

2.3. Persistence Modules. A persistence module V (over R) consists of an R-indexed family of vector
spaces V(t) for t ∈ R and linear maps V [s ≤ t] : V(s)→ V(t) for s ≤ t subject to the following conditions.

(1) V(t ≤ t) = 1V(t) for all t and
(2) V(s ≤ t) ◦ V(r ≤ s) = V(r ≤ t) for all r ≤ s ≤ t.

A homomorphism φ : V → W of persistence modules is an R-indexed collection of linear maps φ =
{
φt :

V(t)→W(t)
}
t∈R such that φt ◦V [s ≤ t] = W [s ≤ t] ◦ψs for all s ≤ t. A persistence module V is pointwise

finite-dimensional (p.f.d.) if V(t) is finite-dimensional for all t ∈ R.

Convention 2.1. For the purposes of this work, we will assume that all persistence modules are p.f.d.

The most common way to produce a persistence module V is to consider the homology of a filtration F .
That is, HF is a persistence module consisting of vector spaces H(F (t)) and linear maps H [F (s) ⊆ F (t)] :
H(F (s))→ H(F (t)).

2.4. Barcodes. Let Int denote the set of intervals in R. A barcode is a function B : B → Int that
associates each bar β in the set B with an interval B(β) ∈ Int. A persistence module may be constructed
from a barcode as the direct sum of interval modules that is unique up to isomorphism. That is, the barcode
of a p.f.d. persistence module V is unique up to isomorphism, and will be denoted BV or B(V) when no
confusion will occur.

Notations 2.1. (i) For any homomorphism φ : V→W of p.f.d. persistence modules, the image of φ is a
p.f.d. persistence module, and therefore has a barcode that will be denoted Bφ = Bimφ.

(ii) For any filtration F , let BF = BHF denote the barcode of the persistent homology module HF .
(iii) For any function f : X → R, let Bf = B(HSub(f)) denote the barcode of the persistent homology of

the sublevel filtration of f , and let B(g ≥ f) = B(HSub [g ≥ f ]) denote the barcode of the image of
the map in homology induced by the inclusion of filtrations Sub(g) ↪→ Sub(f).

Let δ ≥ 0 and for any interval I ∈ Int let Sδ(I) =
{
t ∈ I | t − δ ∈ I and t + δ ∈ I}. Given a barcode

B : B → Int let Bδ =
{
β ∈ B

∣∣ Sδ(B(β)) 6= ∅
}
. The δ-smoothing of B is the barcode Bδ : Bδ → Int

defined for β ∈ Bδ as Bδ(β) = Sδ(B(β)). A δ-bottleneck matching between barcodes A and B is a subset
M ⊆ A× B such that

(1) for all α ∈ Aδ there is a unique β ∈ B with (α, β) ∈M and Aδ(α) ⊆ B(β);

(2) for all β ∈ Bδ there is a unique α ∈ A with (α, β) ∈M and Bδ(β) ⊆ A(α).

The bottleneck distance between A and B is defined

dB(A,B) = inf {δ ≥ 0 | there exists a δ-bottleneck matching between A and B} .
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3. Sub-Barcodes and The Lipschitz Extension Problem

In this section we review the theory of sub-barcodes from the work of Chubet et al. [5] which gives sufficient
conditions in order to guarantee that the barcode of a persistence module is a sub-barcode of another. Here,
we present a special case that will be used to prove the correctness of the algorithms in this paper.

Definition 3.1 (Sub-barcode). Given barcodes A and B, we say that A is a sub-barcode of B and write
A v B if there is an injective map M : A → B such that for all α ∈ A, we have A(α) ⊆ B(M(α)). Note
that Bδ v B and dB(A,B) ≤ δ implies Aδ v B and Bδ v A.

Cohen-Steiner et al. [6] showed that the barcode of a homomorphism induced by an inclusion of filtrations
can be computed efficiently. More recently, Bauer and Schmahl [2] gave an efficient implementation incor-
porating several heuristics. These results provide a natural computational variant of the following theorem
which will be used to establish guarantees on the algorithms presented in the following section. The proof
is based on the induced matching theory of Bauer and Lesnick [1].

Theorem 3.2. If φ : U→ V and ψ : V→W are persistence module homomorphisms then Bψφ v BV.

The utility of Theorem 3.2 comes from the following corollary for ordered functions.

Corollary 3.3. If g ≥ f ≥ ` : X → R then B(g ≥ `) v Bf .

3.1. The Lipschitz Extension Problem. Let X and Y be metric spaces and let f : X → Y be an
unknown Lipschitz function. In the Lipschitz extension problem, the input is a finite sample P of X, in
addition to function values f(p) for each sample point p ∈ P ; the output is a Lipschitz function f̃P : X → Y

such that f(p) = f̃P (p) for all p ∈ P . In the special case where the codomain of f is R, it is always possible
to define such an extension. In fact, there are two canonical Lipschitz extensions of real-valued functions
that we will consider in this paper.

Definition 3.4 (Maximum and Minimum Lipschitz Extensions). Let X be a metric space and let f : X → R
be an unknown c-Lipschitz function. Given a finite sample P ofX let fP = f |P : P → R denote the restriction
of f to P . The minimum Lipschitz extension f∧P : X → R of fP is defined for x ∈ X as

f∧P (x) = max
p∈P

f(p)− cd(x, p).

Similarly, the maximum Lipschitz extension f∨P : X → R is defined

f∨P (x) = min
p∈P

f(p) + cd(x, p).

It follows directly from these definitions that f∨P ≥ f ≥ f∧P for any sample P ⊂ X. The notation f∨P and
f∧P is intended to evoke the notation for joins and meets in lattices.

3.2. A Vietoris-Rips Approach for Metric Data. In order to do computations, a filtration is often
modeled as a discrete object known as a simplicial complex. Formally, a simplicial complex K is a pair
(V, S) where V is any set and S is a collection of subsets σ ⊆ S known as simplices such that σ ∈ S and
τ ⊆ σ implies τ ∈ S. A filtered simplicial complex is a filtration F in which F (t) is a simplicial complex for
all t ∈ R.

In particular, we will make use of the (Vietoris-)Rips complex, which is defined for a finite sample
P ⊂ X and ε > 0 as the simplicial complex Rε(P ) =

{
σ ⊆ P

∣∣d(p, q) ≤ ε for all p, q ∈ σ
}

. The Rips
complex can be easily computed from metric data, however, it does not accurately capture the topology of

the underlying space. On the other hand, the Čech complex, defined Čε(P ) =
{
σ ⊆ P

∣∣∣ ⋂p∈σ ballε(p) 6= ∅
}

,

enjoys a homotopy equivalence with the corresponding metric cover, under suitable sampling conditions, by
the Nerve Theorem. Formally, we will assume the strong convexity radius %X of X is sufficiently large so
that S will form a good open cover. Importantly, we have the following sequence of inclusions referred to as
the Rips-Čech interleaving :

Rε(P ) ⊆ Čε(P ) ⊆ R2ε(P ).

Using this fact, we will approximate the topology of the Čech complex, and therefore the underlying metric
cover, using a pair of Rips complexes Rε(P ) ↪→ R2ε(P ) as follows.
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For any function f : X → R, let St denote the sublevels of fS . For any ε ≥ 0, let Rεf (S) and Čεf (S)

respectively denote the filtrations on Rε(S) and Čε(S) induced by fS defined

Rεf (S) =
{
Rε(St)

}
t∈R and Čεf (S) =

{
Čε(St)

}
t∈R.

Theorem 3.5. Let X be compact metric space with %X > 2δ and let S ⊆ X with dH(X,S) ≤ δ.
If g ≥ f ≥ ` : X → R then

Bcδ
(
Rδg(S) ↪→ R2δ

` (S)
)
v Bf .

Proof. By the standard Rips-Čech interleaving and the function ordering, we have

Rδg(S) ↪→ Čδg(S) ↪→ Čδf (S) ↪→ Čδ` (S) ↪→ R2δ
` (S).

Thus, by Corollary 3.3, we get B
(
Rδg(S) ↪→ R2δ

` (S)
)
v BČδf (S).

Letting Wf denote the filtration defined for t ∈ R as Wf (t) =
⋃
s∈St ballδ(s), we have that BWf

= BČδf (S)

by the Persistent Nerve Lemma (see Chazal et al. [4], Lemma 3.4). Using the triangle inequality and the
Lipschitz condition on f , we have dB(BWf

,Bf ) ≤ cδ, so BcδWf
v Bf .

Putting these facts together implies the desired result that

Bcδ
(
Rδg(S) ↪→ R2δ

` (S)
)
v Bf .

�

The preceding theorem supports the following algorithm in the case where the function values are only
known at a subset P of S. There is no assumption about the density of P .

The Vietoris-Rips Sub-barcode Algorithm:

Input: Constants δ and c, a δ-sample S of X, a subset P of S, and fP : P → R.
Output: A barcode that is guaranteed to be a sub-barcode of every c-Lipschitz function on X that agrees

with the input on P .

(1) Compute Rδ(S) and R2δ(S).
(2) Compute the maximum Lipschitz extension f∨P on the vertices S.
(3) Similarly, compute the minimum Lipschitz extension f∧P on the vertices.
(4) Compute the image persistence barcode B

(
Rδ
f∨P

(S) ↪→ R2δ
f∧P

(S)
)
.

(5) Return the cδ-smoothing Bcδ
(
Rδ
f∨P

(S) ↪→ R2δ
f∧P

(S)
)
.

Remark 3.1. The preceding constructions only require a sufficiently dense sample of X. It is possible
to subsample S in a way that preserves this guarantee, but also reduces the complexity of the resulting
complexes if the intrinsic dimension is low. Let d denote the doubling dimension of X, defined as the log
of the maximum number of radius r metric balls needed to cover a ball of radius 2r. Sheehy [8] showed

that the complexity of a Vietoris-Rips complex at scale δ on an O(δ)-net of X has total complexity 2O(d2)n.
This result was used to build an filtration to approximate the Vietoris-Rips complex at all scales. In the
current work, it suffices to consider two different scales, and thus, two different linear size complexes. So,
for low-dimensional input, there exists a linear size nested pair of filtrations whose image persistence gives
a guaranteed sub-barcode.
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