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Abstract

For two point sets A,B ⊂ Rd, with |A| = |B| = n and d > 1 a constant, and for a param-
eter ε > 0, we present a randomized algorithm that, with probability at least 1/2, computes
in O(n(ε−O(d3) log log n + ε−O(d) log4 n log5 log n)) time, an ε-approximate minimum-cost
perfect matching under any Lp-metric. All previous algorithms take n(ε−1 log n)Ω(d) time.
We use a randomly-shifted tree, with a polynomial branching factor and O(log log n) height,
to define a tree-based distance function that ε-approximates the Lp metric as well as to
compute the matching hierarchically. Then, we apply the primal-dual framework on a com-
pressed representation of the residual graph to obtain an efficient implementation of the
Hungarian-search and augment operations.

1 Introduction

Let A,B ⊂ Rd be two point sets of size n each, where d > 1 is a constant, and d(·, ·) a
metric. Let G = (A ∪ B,A × B) be a weighted complete bipartite graph in which the cost
of an edge (a, b) ∈ A × B is d(a, b). A matching in G is a set of vertex-disjoint edges in
G. A perfect matching in G is a matching of size n. The cost of a matching M , denoted by
¢(M), is ¢(M) =

∑
(a,b)∈M d(a, b). The minimum-cost perfect matching in G, denoted by M∗,

is a perfect matching in G of the minimum cost. For any ε > 0, a perfect matching M in
G is called an ε-approximate matching if ¢(M) ≤ (1 + ε)¢(M∗). We consider the case where
the cost d(a, b) is the Lp distance denoted by ∥a − b∥p. The optimal transport (OT) distance
between two (possibly continuous) distributions can be estimated by taking n samples from both
distributions and then computing their minimum-cost perfect matching. The wide applicability
of OT in Machine Learning and Computer Vision [5, 16, 19] has motivated the design of fast
exact and approximation algorithms that compute a minimum-cost perfect matching. In this
paper, for the Lp-norm, we present a new algorithm to computing an ε-approximate matching.

1.1 Related work

For an arbitrary weighted bipartite graph with n vertices and m edges, the Kuhn-Munkres
algorithm [12] computes a minimum-weight bipartite matching in a weighted bipartite graph
in O(mn + n2 log n) time. For bipartite graphs with non-negative integer costs bounded by
C, Gabow and Tarjan [9] gave an O(m

√
n log(nC))-time algorithm. Both the Hungarian and

Gabow-Tarjan algorithms are combinatorial algorithms that iteratively find an augmenting path
and augment the matching along this path. The augmenting paths are chosen such that the
increase in the matching cost after each augmentation is minimized. This cost increase is referred
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to as the net-cost of the path. Alternate approaches such as the electrical flow [20] method and
the matrix multiplication based methods [14] can be used to obtain fast matching algorithms.
The current best known execution time is Õ(m+ n1.5).

When A∪B is a 2-dimensional point set in the Euclidean space, a Euclidean minimum-weight
matching (EMWM) can be computed in O(n2 polylog n) time [11], and in O(n3/2 polylog n) time
when the points have integer coordinates [17, 18]. For this case, it is easy to compute a O(log n)-
approximate matching in expectation using a randomly shifted quad-tree [6, 7]. Agarwal and
Varadarajan [1] used the shifted quad-tree to compute an O(log 1/δ)-approximate solution in
O(n1+δ) time. Following this, there were several results that used such a decomposition; see for
instance [4, 8, 10]. The current best-known approximation algorithm for computing EMWM is by
Raghvendra and Agarwal [15], which computes an ε-approximate matching with high probability
in n(ε−1 log n)O(d) time. In their algorithm, each cell □ of a randomly shifted quad-tree Q is
decomposed by a uniform grid into (log n/ε)O(d) subcells. The Euclidean distance between any
pair of points u, v with □ as their least common ancestor in Q is ε-approximated by the distance
between the subcells of □ that contain u and v respectively. Their algorithm uses Q to compute
a minimum net-cost augmenting path P with respect to the new distance and augment the
matching along this path, both in time O(|P |poly log n). They obtain a near-linear execution
time by bounding the total length of all augmenting paths by O(ε−1n log n). To compute these
paths quickly, they compress the residual graph inside □ into a graph of (log n/ε)O(d) size
and execute Bellman-Ford algorithm on this graph. Lahn and Raghvendra [13] extended this
framework to approximate the 2-Wasserstein distance of planar point sets, i.e., an approximate
minimum-cost matching when d(u, v) is ∥u−v∥22. Unlike Euclidean distance, approximating the
squared-Euclidean distance using Q results in a polynomial sized compressed residual graph at
each cell. Since using Bellman-Ford algorithm on such a compressed graph can be prohibitively
expensive, they introduce a novel primal-dual framework and define compressed feasibility on
the compressed residual graph. Using this framework, they are able to find an augmenting
path as well as augment it along this path in sub-linear time. Consequently, they achieve an
O(n5/4poly(log n, 1/ε)) time algorithm for the 2-Wasserstein distance between planar point sets.
Recently, Agarwal et al. [2] have designed a deterministic algorithm that uses multiple quadtrees
to compute a (1 + ε)-approximate Euclidean matching in n(ε−1 log n)O(d) time.

1.2 Our result

The following theorem states our main result.

Theorem 1.1. Let A,B be two point sets in Rd of size n each, for a constant d > 1, and let
0 < ε ≤ 1 be a parameter. With probability at least 1/2, an ε-approximate matching under any
Lp-metric can be computed in O(n(ε−O(d3) log log n+ ε−O(d) log4 n log5 log n)) time.

For the sake of simplicity, we describe the algorithm for the Euclidean metric. It can be
extended to other Lp-metrics in a straight forward manner. For any two points a and b, we use
∥a− b∥ to denote the Euclidean distance between them. Using standard techniques [13, 15], we
can preprocess the input points in O(n log n) time so that the point sets A and B satisfy the
following conditions: (P1) All input points have integer coordinates bounded by nO(1). (P2) No
integer grid point contains points of both A and B. (P3) ¢(M∗) ∈

[
3
√
dn
ε , 9

√
dn
ε

]
. Assuming A

and B satisfy (P1)–(P3), we present an algorithm that, with probability 1/2, computes an (ε/2)-
approximate matching in O(n(ε−O(d3) + ε−O(d) log4 n log4 log n)) time. The preprocessing step
adds an additional log log n factor to the running time of the algorithm, resulting in the running
time mentioned in Theorem 1.1. In the following, we provide an overview of our approach and
its comparison with existing work.
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As in [13, 15], we also define a tree based distance dT(·, ·) that approximates the Euclidean
distance. Unlike [13, 15] that use a quad-tree of height O(log n), we build a tree T of height
O(log log n) (see Section 2.1 in [3]). Each cell of T at level i (root is assigned level 0) with
a side length of ℓi is partitioned using a randomly-shifted grid into children whose side-length
ℓi+1 = ℓci where c < 1 is a constant that depends only on d. Given that the point set have integer
coordinates bounded by nO(1) (from (P1)), the height of T is h = O(log log n). For any pair of
points (u, v) with a cell □ of level i as its least common ancestor, let □u and □v be the children
of □ that contain u and v respectively. As in the case of a randomly shifted-quadtree where we
get an O(h) = O(log n) approximation, one can show that the distance between the centers of
□u and □v is a O(h) = O(log log n) approximation of the Euclidean distance (in expectation).
We obtain a refined (1 + ε)-approximation of the Euclidean distance by partitioning □u and
□v into finer subcells and then using the distance between the centers of those sub-cells that
contain u and v. As in [13, 15], one can divide each cell into O(hd) many subcells and obtain
a (1 + ε)-approximation of the Euclidean distance. With h = log log n, this will result in an
execution time of Ω(n log4 n(ε−1 log log n)d

3
). Instead, we partition a cell into subcells more

carefully (See the definition of subcells in Section 2.2 in [3]). Intuitively, we make the number
of subcells a function of the height of the cell, i.e., smaller cells have significantly fewer than
logO(d) log n subcells. As a result, we are able to improve the dependence of our algorithm from
logO(d3) log n to logO(d) log n. Interestingly, we show that the expected distortion is higher for
cells that are closer to the leaves. Nonetheless, we are able to bound the expected error of our
distance between any two points u and v by ε∥u− v∥ (See Lemma 3 in [3]).

Similar to [13], our algorithm compactly stores the residual graph (Section 5.2 in [3]) as well
as the dual weights (Section 5.3 in [3]) and uses this compact representation to efficiently find
augmenting paths. The size of the compressed residual graph inside any cell is bounded by the
side-length of its child, i.e., smaller cells have a smaller compressed graph (Lemma 14 in [3]).
As a result, finding augmenting paths in smaller cells is significantly faster than that in larger
ones. In our analysis, we show that most of the augmenting paths in the algorithm are found in
smaller cells which can be computed quickly. In particular, only O( n

εℓi+1
) augmenting paths are

found inside a compressed graph at level i, each of which can be found in O(ℓi+1 log
2 n) time.

Combining across all O(log log n) levels, we get a near-linear execution time.

Typical matching algorithms that are based on a compressed residual graph modify the
dual weights and find an augmenting path with respect to current matching M . The algorithms
presented in [13, 15] classify edges into local and non-local which they use critically in computing
a minimum net-cost augmenting path. We remove the need for this classification and make our
algorithm and its analysis simpler. Instead of using the classification, our algorithm carefully
updates the dual weights, possibly modifies a matching M to another matching M ′ of the same
size and cost, and finds an augmenting path with respect to the new matching M ′.
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