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Abstract

The classical and extensively-studied Fréchet distance between two curves is defined as an inf max,
where the infimum is over all traversals of the curves, and the maximum is over all concurrent positions
of the two agents. In this article we investigate a “flipped” Fréchet measure defined by a sup min –
the supremum is over all traversals of the curves, and the minimum is over all concurrent positions of
the two agents. This measure produces a notion of “social distance” between two curves (or general
domains), where agents traverse curves while trying to stay as far apart as possible.

We draw connections between our proposed flipped Fréchet measure and existing related work
in computational geometry, hoping that our new measure may spawn investigations akin to those
performed for the Fréchet distance, and into further interesting problems that arise.

1 Introduction
The classical Fréchet distance between two curves P and Q is defined as the minimum length of a leash
required for a person to walk their dog, with the person and the dog traversing P and Q from start to finish,
respectively. Inspired by the challenge of maintaining social distancing among groups and individuals, we
consider the question of developing a notion opposite to the Fréchet distance, where instead of keeping
the agents close (short leash), we keep them as far apart as possible.

In this paper we propose a new measure, called the Flipped Fréchet measure, to capture the amount of
social distancing possible while traversing two curves. While Fréchet distance is defined as an inf max,
where the infimum is over all traversals of the curves, and the maximum is over all concurrent positions of
the two agents, the flipped Fréchet measure1 is defined as a sup min – the supremum is over all traversals
of the curves, and the minimum is over all concurrent positions of the two agents. How efficiently can this
measure be computed, for curves in one or two dimensions? What if the two agents are walking on edges
of a graph, which may or may not be embedded in the plane? Such questions have been considered for
Fréchet distance, and in this paper we initiate their study for the flipped Fréchet measure.

We refer to the two agents as “Red” and “Blue” henceforth. Considering the social distancing problem
further, what if Blue is not restricted to move along some given curve; rather, it can choose its own path?
We now start arriving at a class of problems that have no analogues in the Fréchet version. Of course, if
Blue had no restrictions at all, it could just go to infinity and thus be far from Red (on any path). It
therefore makes sense to restrict the domain for Blue, e.g. to a simple polygon P in which Red is traveling,
and measure separation using geodesic distance in P . We consider questions regarding the complexity of
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calculating a strategy for Blue to stay away from Red, when Red is traveling on a given path, which may
or not be a geodesic in P .

An architect designing spaces within a building is faced with choices about the shapes of these spaces,
where one must choose, say, between two polygons P and Q where agents will move, in hopes to maximize
the potential for social distancing. In order to do so, it would be useful to have a notion of a “social
distancing width” of a polygon, that captures the difficulty or ease with which two agents can move around
in a polygon while maintaining separation. Consider a simple polygon P where the Red agent is on a
mission to follow a path, e.g. to traverse the boundary of P , while the Blue agent moves within P (with a
starting point of Blue’s choice), in order to maximize the minimum Red-Blue distance. We define the
social distance width (SDW for short) of a polygon P to be the minimum Red-Blue distance that can
be maintained throughout the movement, maximized over all possible movement strategies, and study
algorithms to compute the SDW of a polygon.

For all of the above problems, in addition to developing algorithms for the general versions, we also
consider special scenarios which facilitate faster algorithms; for example, while our algorithm for computing
the SDW for general polygons runs in quadratic time, we show that for skinny polygons (or a tree), one
can compute the SDW in linear time.

Although this article mostly considers the above problems in the case of k = 2 agents, in general
one may be given k agents and k associated domains. Each agent is restricted to move only within its
respective domain, and at least one of the agents has some mission, e.g., to move from a given start point
to a given end point, or to traverse a given path inside the domain. In addition, the domains may be
shared or distinct, and different agents may have different speeds. The goal is to find a movement strategy
for all the agents, such that the minimum pairwise distance between the agents at any time is maximized.
Additionally, one may seek to minimize the time necessary to complete one or more missions.

This new class of problems is different from the usual motion planning problems between robots, or
disjoint disks, in some fundamental aspects. Most, if not all, literature on robot motion planning assumes
robots are cooperating on some task. One then considers optimizing objectives like makespan, or total
distance travelled, etc. However, the kind of movement we consider is far from cooperative – in fact,
some agents may not care about social distancing, while others do. Some may be “on a mission” while
others are just trying to maintain a safe distance. In addition, different agents may have different starting
times and deadlines. Furthermore, as mentioned above, one also encounters design problems, where one
may want to configure a layout of a building, a floor plan, or designate rules for traffic flow, in order to
facilitate social distancing.

2 Polygonal curves
We begin by considering the scenario in which the two domains are polygonal curves P and Q. The agents’
missions are to traverse their respective curves, from the start point to the end point, in order to maximize
the minimum distance between the agents. The Flipped Fréchet measure between the two curves is the
maximum separation that can be maintained. Formally, let P : [1, n] → Rd and Q : [1, m] → Rd be two
polygonal curves. A traversal of P and Q is a pair of continuous, non-decreasing, surjective functions
f : [0, 1] → [1, n] and g : [0, 1] → [1, m].

Definition 1 (Flipped Fréchet Measure). The Flipped Fréchet measure (FF) of P and Q is FF (P, Q) =
sup

τ=(f,g)
min

t∈[0,1]
∥P (f(t)) − Q(g(t))∥.

Note that the well-studied Fréchet distance between P and Q is infτ=(f,g) maxt∈[0,1] ∥P (f(t))−Q(g(t))∥,
where f, g are a traversal of P and Q. We consider both the continuous case (agents move continuously
along the edges of their curves), and the discrete case (agents “jump” between consecutive vertices of
their curves).

We first show that the Flipped Fréchet measure between two n-vertex curves in one dimension (1D) can
be computed in near-linear time, demonstrating that “flipping” the objective function makes this setting
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easier: for continuous Fréchet there exist conditional (SETH-based) quadratic lower bounds [BM16].
Theorem 2. Given two polygonal curves P, Q of length n in 1D, their social distance width, FF (P, Q),
can be computed in O(n log2 n) time.

Next, we give quadratic algorithms and then conditional lower bounds for computing or approximating
other variants (1D discrete, 2D continuous and discrete) of FF measure, specifically:
Theorem 3. There exists

• a quadratic lower bound, conditioned on the Strong Exponential Time Hypothesis (SETH), on
approximating FF measure for curves in 2D, with approximation factor

√
5

2
√

2 , and

• a quadratic lower bound, conditioned on the Strong Exponential Time Hypothesis (SETH), on
approximating dFF measure for 1D curves, with approximation factor 2

3 .

Our algorithm for continuous FF in 1D generalizes to any number k ≥ 2 of agents, with a running
time of O(kn log n). The question of whether or not there exists an algorithm in 2D with running time
fully polynomial in k remains open (for the Fréchet distance of a set of curves, the best known running
time is roughly O(nk); see [DR04]).

3 SDW of polygons
We then consider distancing problems in which the given domain (for both Red and Blue) is a simple
polygon. Since the two agents are moving inside the same polygon, it is natural to consider geodesic
distance (i.e., the shortest path inside the polygon) instead of Euclidean distance to measure separation.

Consider a scenario in which Red and Blue have to traverse two polygonal paths R and B, both inside
a given polygon P , and their goal is to find a movement strategy (a traversal) that maintains geodesic
distance of at least δ between them. For the analogous Fréchet problem (Red and Blue have to maintain
geodesic distance of at most δ), Cook and Wenk [CW10] presented an algorithm that runs in O(n2 log N)
time, where N is the complexity of P and n is the complexity of R and B. A “flipped” version of their
algorithm can be applied for computing the FF (R, B) under geodesic distance in nearly quadratic time.

Closed curves and polygons. Consider a scenario in which the polygonal curves R and B are closed
curves. Here, the starting points of Red and Blue are not given as an input, and the goal is to decide
whether they can traverse their respective curves while maintaining distance at least δ. The analogous
Fréchet problem has been investigated ([AG95],[SVY14]), and again similar “flipped” versions of these
near quadratic time algorithms can be applied to FF.

We can then define the Social Distance Width of two polygons P1, P2 as a special case in which R is
the boundary of P1 and B is the boundary of P2; i.e., SDW (P1, P2) = SDW (∂P1, ∂P2). Similarly, the
Social Distance Width of a (single) polygon P is SDW (P ) = FF (∂P, ∂P ). We show
Theorem 4. The social distance width of a polygon P of n vertices can be computed inO(n2) time.

The notion of SDW of a polygon is possibly related to other characteristics of polygons, such as fatness.
Intuitively, if the polygon P is fat under standard definitions, then the SDW of P will be large. However,
the exact connection is yet unclear, and we leave open the question of what exactly is the relation between
the two definitions.

When both Red and Blue are restricted to traverse a given path, it seems that the Fréchet-like nature
of the problem leads to near-quadratic time algorithms. Thus, we consider the scenario where Blue has
more freedom, and it is not required to traverse a given path.
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Red on an arbitrary path mission. We first consider the case when Red moves along an arbitrary
path R in P , and Blue may wander around in P , starting from some given point b. The free-space diagram
can be adapted to the case of a path and a polygon, by partitioning the polygon into a linear number
of convex cells (for example, a triangulation). This is a three-dimensional structure, which contains
O(n2) cells (assuming that the complexity of both R and P is O(n)). However, for maintaining geodesic
separation, building the free-space may be cumbersome, because it would involve building the parametric
shortest path map in a triangle as the source moves along a segment, and such SPM may have Ω(n)
combinatorial changes. Instead, we show that Blue may stay on the boundary, thus reducing the problem
to the standard free-space diagram between a path and a closed curve. We show:
Theorem 5. Let P be a polygon with n vertices, b a point in P , and R a path between two points r and
r′ in P . There exists an O(n2)-time algorithm to decide whether there exists a path B in P starting from
b, such that FF (R, B) > 1 under geodesic distance.

We now show that in special cases, the SDW can be computed in linear-time.

Red on a shortest path mission. Assume that Red moves along a geodesic path R in P (Red is on a
mission and does not care about social distancing) while Blue may wander around anywhere within P
starting from a given point b. We show that the decision problem, whether Blue can maintain (geodesic)
social distance at least 1 from Red, can be solved in linear time.
Theorem 6. Let P be a polygon with n vertices, b a point in P , and R a geodesic shortest path between
two points r and r′ in P . There exists an O(n)-time algorithm to decide whether there exists a path B in
P starting from b, such that FF (R, B) > 1 under geodesic distance.

Social distancing in a skinny polygon (or a tree). We then consider the case in which the shared
domain of Red and Blue is a tree T , and the distance is the shortest-path distance in the tree (the distance
between vertices u and v denoted |uv|). Red moves around T in a depth-first fashion: there is no start
and end point, it keeps moving ad infinitum. In particular, if T is embedded in the plane, the motion
is the limiting case of moving around the boundary of an infinitesimally thin simple polygon, and the
distance is the geodesic distance inside the polygon.
Theorem 7. Let T be a tree with n vertices, embedded in the plane, and R be a traversal of T in a
depth-first fashion. There exists an O(n)-time algorithm to find a path B in T that maximizes SDW (R, B)
under the geodesic distance.

The discussion on this special case of thin polygons, leads us to investigating the more general case of
Social Distance Width of two graphs, which we discuss in the full version of the paper.
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