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Abstract. We completely characterize graphs G
and their non-edges f such that across all 3-dimensional
Euclidean realizations of a given G-linkage, f attains
lengths in a single interval, answering a question posed
by Sitharam and Gao in 2010. More precisely, given any
assignment of (Euclidean) edge-lengths for G, f attains
a single interval of length values across all assignment of
points in R3 to the vertices of G such that their pairwise
distances agree with the given edge lengths. The class is
not minor closed, has no obvious well quasi-ordering, and
there are infinitely many minimal graphs w.r.t. edge con-
tractions in the complement class. Our characterization
overcomes these obstacles, is based on the 2 forbidden
minors of the minor-closed class of 3-flattenable graphs,
and contributes to the theory of Cayley configurations with
applications in analyzing a variety of distance-constrained
configuration spaces.

1 Introduction
A linkage (G, ℓ) is a pair containing a graph G and a

squared Euclidean edge-length map ℓ from the edge set
of G to the real numbers. In this paper, we assume that G
is a simple, connected graph. A d-dimensional Euclidean
realization of (G, ℓ) is a map p from the vertex set of G
to points in Rd such that, for each edge uv of G, the Eu-
clidean distance between p(u) and p(v) is ℓ(uv)1/2. The
d-dimensional configuration space Cd(G, ℓ) of (G, ℓ) is the
set of all d-dimensional realizations of this linkage.

The problem of representing and analyzing the set
Cd(G, ℓ), assuming it is non-empty, has applications in
computer-aided design, robotics, and molecular science.
Graph rigidity theory attempts to determine the dimension
of Cd(G, ℓ), for almost all choices of the map ℓ, using only
the combinatorics of the graph G. When d = 2, there
is a well-known combinatorial characterization of graphs
G such that C2(G, ℓ) is finite-dimensional for almost all
choices of ℓ. No such result is known for any d > 2. See
[5], [6], and [12] for an overview of graph rigidity theory and
the configuration space problem.

A recent method [11] to represent the set Cd(G, ℓ) is
to first choose a set F of nonedges of G - i.e., pairs of ver-
tices that are not edges - and map each point p in Cd(G, ℓ)
to the point in R|F | corresponding to the squared lengths
attained by each nonedge in F under p. Let ϕd

F (G, ℓ) de-
note the image of this map, which is called the Cayley con-
figuration space of (G, ℓ) over F in Rd. Given a point in
ϕd
F (G, ℓ) the pre-image of the map gives points in Cd(G, ℓ).

There are several known partial characterizations of
graphs G and choices of sets F of nonedges such that
the following properties hold. Property (i) - ϕd

F (G, ℓ) is
convex for any choice of the map ℓ; and Property (ii)
- the preimage of each point in ϕd

F (G, ℓ) is a finite set
[11, 14, 15]. Property (i), which is the focus of this pa-
per, allows for e.g. membership determination, sampling
and other computations on ϕd

F (G, ℓ) - by using its convex-
ity and its boundary description - and in deterministic poly-
nomial time for d ≤ 3 [11]. Note that the d-dimensional
configuration space Cd(G, ℓ) could have dimension much
larger or smaller than d, and merely bounds the dimen-
sion of the image ϕd

F (G, ℓ) from above. Clearly, the latter
dimension is at most |F |, and generically equals |F | pro-
vided F is independent and not implied by G in the sense
of graph rigidity [6, 12]. Property (ii), along with some addi-
tional geometric information [7, 8, 13–15, 17, 19], enables
the pre-image of the map above to be computed in poly-
nomial time for d ≤ 3.

For d = 2, there is a complete characterization of pairs
(G,F ) satisfying Property (i) [11]. We present a complete
characterization for d = 3, for the case where F contains
exactly one edge.

1.1 Previous work
We formalize Property (i) as follows.

Figure 1: Shown are three pairs (G,F ), where F is the set of
green nonedges of the graph G. Each pair has the d-convexity
property, for any d ≥ 3.

Definition 1 Let G be a graph, let F be a set of its
nonedges, and let d be any positive integer. The pair
(G,F ) has the d-convexity property if the Cayley config-
uration space ϕd

F (G, ℓ) is a convex set, for any squared
edge-length map ℓ. If (G,F ) has this property and F con-
tains exactly one nonedge f , we say that (G, f) has the
d-single interval property (d-SIP), since this implies that
ϕd
f (G, ℓ) is a single interval.

For example, each pair in Figure 1 (nonedge sets
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are shown in green) has the d-convexity property, for any
d ≥ 3. Since the nonedge set in the right-most pair has
size 1, this pair has the d-SIP, for any d ≥ 3. Intuitively,
each endpoint of this nonedge traces out a circle in 3-
dimensions. In Figure 2, the pair (G,F ) on the top left
(resp. bottom left) has the d-convexity property, for any
d ≥ 3 (resp. d ≥ 2). The top left pair does not have 2-
convexity. See Theorem 1. The top-right image in this fig-
ure is the set ϕ3

F (G, ℓ) for the top-left linkage. The bottom-
right image in this figure is the set ϕ2

F (G, ℓ) for the bottom-
left linkage.

Figure 2: Left: linkages (G, ℓ) and sets F of dashed nonedges.
Top-right: the set ϕ3

F (G, ℓ) for the top-left linkage; credit to [18].
Bottom-right: the set ϕ2

F (G, ℓ) for the bottom-left linkage. Credit
for both bottom figures to [11].

Using properties of the Euclidean distance cone, dis-
covered by Schoenberg [10], a strong connection between
d-convexity and the property of graph flattenability was
demonstrated for d ≤ 3 [11]. A graph G is d-flattenable
if any linkage (G, ℓ) that has a realization in some dimen-
sion also has a d-dimensional realization. For example,
consider each pair (G,F ) in Figure 1 and the graph G∪F .
For the first two pairs, G ∪ F is 3-flattenable. For the third
pair, G ∪ F is 4-flattenable, but not 3-flattenable.

The significance of this connection is that flattenability
is a minor-closed property of graphs [4]. Hence, the fa-
mous Graph Minor theorem [9] ensures the existence of
a finite set Md of graphs, called forbidden minors, such
that the class of d-flattenable graphs is exactly the class of
graphs that do not have a minor in Md. From folkore, the
forbidden minors for 1 and 2-flattenability are K3 and K4,
respectively. The forbidden minors for 3-flattenability are
K5 and K2,2,2 [3, 4]. The complete set of forbidden minors

for d-flattenability is unknown for any d > 3. Clearly, if a
graph is d-flattenable, it is also d′-flattenable for any d′ ≥ d

Inspired by the work of Ball [2], the connection be-
tween d-flattenability and d-convexity and was generalized
to any dimension, and to other norms [16].

Theorem 1 ([16]) For any graph G, the following state-
ments are equivalent:

1. G is d-flattenable.

2. For any d′ ≥ d, any subset F of the edges of G
and any linkage (G \F, ℓ), the Cayley configuration
space ϕd′

F (G \ F, ℓ) is convex.

This theorem explains why the first two pairs (G,F ) in
Figure 1 have the d-convexity property, for any d ≥ 3: as
mentioned above, the graphs G∪F are 3-flattenable. Sim-
ilarly, for the top left pair (G,F ) in Figure 2, the graph G∪F
is 3-flattenable (no K5 or K2,2,2 minor) but not 2-flattenable
(K4 minor). For the bottom left G ∪ F is 2-flattenable (no
K4 minor). Hence, this theorem states that the top left
(resp. bottom left) (G,F ) has the d-convexity property, for
any d ≥ 3 (resp. d ≥ 2).

These partial characterizations of convexity have been
heavily used in the opensource software (EASAL [7][8]
and CayMos [20] [13]) for respectively molecular and parti-
cle assembly modeling and kinematic mechanism analysis
and design and have led to several improvements in those
areas, besides efficient algorithms for the core problem of
distance constraint graph realization [1].

These are only partial characterizations of d-convexity
even for d ≤ 3 because there are many graphs G that are
not d-flattenable, and yet there may be choices of sets F of
nonedges of G such that (G,F ) has the d-convexity prop-
erty. A complete characterization of these pairs was given
for d = 2 [11]. We require the following definition to state
the theorem.

Definition 2 A clique-separator C of a graph G is a sub-
graph of G that is a clique whose vertex set separates G.
Let Hi be a connected component of G \ V (C) and let
Gi be the subgraph of G induced by V (Hi) ∪ V (C). The
graph Gi is a C-clique-sum component of G and G is the
C-clique-sum of the set of these components.

For any positive integer k, a minimal k-clique-sum de-
composition of G is a tree such that the root node is G and
each internal node G′ is the C-clique-sum of its children,
for some clique-separator C of G′ on at most k vertices. A
minimal k-clique-sum component of G is any leaf node in
any such decomposition. A minimal k-clique-sum graph is
a graph that has no clique-separator on at most k vertices.

For example, the graph on the right in Figure 1 con-
tains two 2-clique-separators, and its minimal 2-clique-sum
components are the K4 and the two K3 subgraphs. On
the other hand, the entire graph is a minimal 1-clique-sum
graph. It is straightforward to verify that every minimal k-
clique-sum decomposition of a graph has the same set of
leaf nodes.
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Theorem 2 ([11]) Let G be a graph and let F be a set of
its nonedges. Then, the following statements are equiva-
lent:

1. (G,F ) has the 2-convexity property.

2. For every minimal 2-clique-sum component H of
G ∪ F that contains any subset of F , H has no K4

minor.

Algorithmically speaking, note that Statement (2) of
this theorem is equivalent to H being 2-flattenable. For a
fixed, finite set of minors, there is a polynomial-time algo-
rithm to determine if a graph has a minor in this set [9].
Hence, we can efficiently check if a pair (G,F ) satisfies
Statement (2) in Theorem 2. A key ingredient in the proof
of this theorem is the following complete characterization
of pairs with the 2-SIP.

Figure 3: The pair on the left has the 2-SIP, while the pair on
the right does not. This illustrates that d-convexity is not a minor-
closed property.

Theorem 3 ([11]) Let G be a graph and let f be one of its
nonedges. Then, the following statements are equivalent:

1. (G, f) has the 2-SIP.

2. For every minimal 2-clique-sum component H of
G ∪ {f} that contains f , H has no K4 minor.

There are two major obstacles to general d-
dimensional extensions of "lucky" results such as Theo-
rems 2 and 3 that turn out to be essentially finite forbidden
minor characterizations with the associated efficient algo-
rithms. First, d-convexity is not a property of graphs, but of
pairs containing a graph and a set of its nonedges. Sec-
ond, d-convexity is not a minor-closed property. For exam-
ple, the pair on the left in Figure 3 has the 2-SIP, but the
pair on the right does not. Hence, the Graph Minor theo-
rem [9] does not directly apply, and it is not clear whether
these properties have anything akin to finite forbidden mi-
nor characterizations at all.

2 Results
The following is our main theorem.

Theorem 4 Let G be a graph and let f be one of its
nonedges. Then, the following statements are equivalent:

1. (G, f) has the 3-SIP.

2. For every minimal 3-clique-sum component H of
G ∪ {f} that contains f , f is contracted in every
K5 and K2,2,2 minor of H.

Before we discuss the main ideas in the proof of this
theorem, it is instructive to see why a simpler generaliza-
tion of Theorem 3 fails for d = 3. For instance, consider
this alternative proposal for Statement (2) in Theorem 4:
every minimal 3-clique-sum component of G ∪ {f} that
contains f has no K5 or K2,2,2 minor. Observe that for the
pair (G, f) on the right in Figure 1, the graph G ∪ {f} is a
minimal 3-clique-sum graph that has a K5 minor. Hence,
the alternative proposed statement indicates that (G, f)
should not have the 3-SIP. However, this pair does have
the 3-SIP, which is accurately indicated by Statement (2)
in Theorem 4. In particular, Theorem 4 correctly recog-
nizes that although G ∪ {f} has a K5 minor, f must be
contracted to reach it.

Figure 4: Minimal pairs in the proof of the converse of Theorem
4.

Finally, we briefly summarize the proof of Theorem
4. The proof of the forward direction is by contrapositive.
First, we assume that there exists a minimal 3-clique-sum
component H of G∪{f} that contains f and has a K5 and
K2,2,2 minor in which f is not contracted. Then, we show
that this implies that (G, f) does not have the 3-SIP.

Along the way to the implication above, we reduce the
problem by finding a pair (G′, f) such that G′ is smaller
than G and it is sufficient to show that (G′, f) does not
have the 3-SIP. The graph G′ is either a clique-sum com-
ponent of G that contains H or a minor of G obtained via
a single contraction on one of its edges. Eventually, we
reach a minimal pair that cannot be further reduced with-
out forcing the resulting pair to have the 3-SIP.

The remainder of the proof takes advantage of the
special properties of such minimal pairs. Examples of
such minimal pairs (G, f) are shown in Figure 4, where f
is the green nonedge. For each pair, observe that G∪ {f}
is a minimal 3-clique-sum graph and any contraction on an
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edge of G does one of the following:

(i) removes every K5 and K2,2,2 minor in which f is not
contracted,

(ii) separates f from any K5 and K2,2,2 minor in which it
is not contracted via some clique-separator, or

(iii) neither (i) nor (ii) and maps f to another edge of G.

Another minimal pair (G2, f2) can be obtained from the
pair (G1, f1) on the left as follows. The graph G2 is ob-
tained from G1 by copying the subgraph "between" the
green and red nonedges and gluing the red nonedge in
this copy to the green nonedge in G1. The nonedge f2
is the green nonedge of G2 that is not contained in G1.
Repeating this process yields an infinite family of minimal
pairs, none of which has the 3-SIP. The set of minimal pairs
being infinite is one of the main obstacles in characterizing
pairs with the d-SIP caused by the fact that the d-SIP is not
a minor-closed property.

Returning to the proof sketch, wlog, we can assume
that (G, f) is a minimal pair. The case where no contrac-
tion on an edge of G satisfies (ii) is easily handled. Oth-
erwise, we show that there exists another nonedge f ′ of
G (the red nonedges in Figure 4) such that (G, f ′) does
not have the 3-SIP. Furthermore, the subgraph "between"
f and f ′ is a special case of 3-flattenable graph, called a
partial 3-tree. These two statements are then sufficient to
show that (G, f) does not have the 3-SIP.

Figure 5: Quotient graphs used in the proof of the forward direc-
tion of Theorem 4.

Next we sketch the proof of the converse of the theo-
rem, which is simpler. It uses the following independently
interesting lemma.

Lemma 1 Let G be a graph and let f1 and f2 be distinct
nonedges of G. If (G, f2) and (G∪ {f2}, f1) both have the
d-SIP, then (G, f1) has the d-SIP.

For example, consider the pair (G, f1) on the right in
Figure 3. Let f2 be the nonedge such that G ∪ {f2} is the
graph on the left. Since G ∪ {f2} is 3-flattenable, (G, f2)

has the 3-SIP, by Theorem 1. Also, as discussed above,
(G ∪ {f2}, f1) has the 2-SIP, which implies that it has the
3-SIP. Thus, Lemma 1 says that (G, f1) has the 3-SIP.

The remainder of the proof proceeds as follows. Start
by assuming Statement (2) in Theorem 4. The strength
of this statement greatly restricts the class of graphs to in-
spect. In particular, it allows us to partition the vertex set of
G∪{f} such that the quotient graph is one of the graphs in
Figure 5 and the endpoints of f , say u and v, are contained
in the sets U1 and U2, respectively. Furthermore, we can
identify vertices a ∈ U3, b ∈ U4, c ∈ U5, and d ∈ U6 that
play a significant role in all paths between the endpoints of
f . Next, we consider the set of pairs

F = {ua, ub, vc, cd, ab, ac, ad, bc, bd, cd}

(see Figure 5) and show that for any f ′ ∈ F , if f ′ is
a nonedge, then (G, f ′) has the 3-SIP. Finally, we use
these facts in combination with Lemma 1 applied to the
nonedges in F to show that (G, f) has the 3-SIP.

3 Open Problems
The first problem is to given an efficient algorithm to

determine whether a pair (G, f) satisfies the characteriza-
tion of this paper, Theorem 4. Since it is not directly a fi-
nite forbidden minor characterization, the polynomial time
algorithm of [9] cannot be used. For reasons mentioned
earlier, the algorithm for 2-SIP cannot be used. The sec-
ond problem is to prove or refute the following conjecture.

Conjecture: Let G be a graph and let F be a set of its
nonedges. Then, the following statements are equivalent:

1. (G,F ) has the d-convexity property.

2. For each nonedge f ∈ F and every minimal d-
clique-sum component H of G ∪ F that contains
f , f is contracted in every d-flattenability forbidden
minor of H.

Note that the number of forbidden minors for d-
flattenability is conjectured to grow quickly with d [4].
Hence, a proof of this conjecture should avoid using prop-
erties of the explicit d-flattenability forbidden minors. The
previous proof of Theorem 3 in [11] and the proof of The-
orem 4 in this paper strongly rely on knowledge of the ex-
plicit minors for d-flattenability for d ≤ 3.
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