
Space-Efficient Collinearity Testing

Boris Aronov∗ Esther Ezra† Micha Sharir‡ Guy Zigdon§

Abstract

The collinearity testing problem is a basic question in computational geometry: given a set P
of n points in the plane, we are asked to determine whether P contains a collinear triple. We
present a self-reduction for this problem, in the real-RAM model, that can be used to decrease
the space complexity of collinearity testing algorithms. As a result, collinearity testing can be
performed in O(n2) expected time using only O(n1/2) working storage.

Introduction

Let P be a set of n points in the plane. The collinearity testing problem is to determine whether
there exists a collinear triple (a, b, c) of (distinct) points in P . This classical problem in computa-
tional geometry is 3sum-hard, i.e., at least as hard as the 3sum problem [10], in which N is a set
of n real numbers, and we want to determine whether there exist a triple (x, y, z) of numbers in N
that add up to zero.

The 3sum problem itself, conjectured for a long time to require Ω(n2) time, was shown by
Grønlund and Pettie [12] (with further improvements by Chan [4]) to be solvable in very slightly
subquadratic time in the real-RAM model (also known as the uniform model). Moreover, in
the linear decision-tree model, in which we only count linear sign tests involving the input point
coordinates (and do not allow any other operation to access the input explicitly), Grønlund and
Pettie improved the running time to nearly O(n3/2) (see also [9,11] for subsequent slight speedups).
This was drastically further improved (still in the linear decision-tree model) to O(n log2 n) time by
Kane et al. [13]. In contrast, no subquadratic algorithm is known for the collinearity testing problem,
neither in the standard real-RAM model nor in the decision-tree model; see [2, 3] for a discussion.
Very recently, several input-restricted variants of collinearity testing were solved in subquadratic
time, both in the decision-tree model and the RAM model [1–4]. However, a subquadratic solution
to the unrestricted case still remains elusive.

In this paper we study collinearity testing with small working storage. This has been motivated
by the work of Lincoln et al. [14], who have applied a simpler technique to reduce the working
storage for the k-sum problem (in which we want to determine whether a set N of real numbers
contains a k-tuple of numbers that sum to zero), using a self-reduction mechanism. That is, given
an algorithm for k-sum, Lincoln et al. showed how to replace it by a different algorithm that uses,
under suitable assumptions, smaller working storage and the same asymptotic running time. We
obtain a similar self-reduction for the harder collinearity testing problem. Concretely, given a
base algorithm for collinearity testing with running time T (n) and working storage S(n), we can
construct another algorithm for the same problem with O(r2(n+ T (n/r))) expected running time

∗Tandon School of Engineering, New York University, Brooklyn NY, USA; boris.aronov@nyu.edu
†School of Computer Science, Bar Ilan University, Ramat Gan, Israel; ezraest@cs.biu.ac.il
‡School of Computer Science, Tel Aviv University, Tel Aviv, Israel; michas@tau.ac.il
§School of Computer Science, Bar Ilan University, Ramat Gan, Israel; guy.zigdon@live.biu.ac.il

1

and O(r + n/r) + S(n/r) working storage, for any 1 ≤ r ≤ n. The reduction is obtained by a
cutting-based decomposition of the problem into subproblems of smaller size and applying the base
algorithm to each of them. Since the subproblems are solved one by one, we only need working
storage for just one subproblem, plus the bookkeeping cost of constructing and maintaining the
decomposition. Controlling the bookkeeping costs is a significant feature of our self-reduction.

As a consequence, collinearity testing can be solved in O(n2) expected time and O(n1/2) working
storage. These bounds resemble the bounds obtained in [14] for the considerably simpler 3sum and
k-sum problems.

Collinearity testing with small working storage

Our self-reduction mechanism uses several classical tools from computational geometry, such as
cuttings, geometric duality, arrangements of lines, and the zone theorem; see, e.g., [8].

The input consists of a set P on n points in the plane. Denote by T0(n) and S0(n) the respective
running time and working storage of the base algorithm A. Let L be the set of the lines dual to
the points of P , obtained by a standard point-line duality transformation [8, Chapter 8]. From
properties of point-line duality, a collinear triple of points of P in the primal plane corresponds to a
concurrent triple of lines of L in the dual plane, and we consider in what follows the latter problem.
Our algorithm is based on (1/r)-cuttings [5], and is conceptually simple.

Constructing the cutting with small working storage. Let 1 ≤ r ≤ n be an integer parame-
ter to be fixed shortly. We construct a (1/r)-cutting Ξ(L) for the lines in L. This is a decomposition
of the plane into O(r2) pairwise openly disjoint triangles, so that each triangle is crossed by at most
n/r lines of L. We present a concrete way of implementing (the randomized version of) Chazelle
and Friedman’s algorithm [5] for constructing such a cutting, which uses small working storage.

We take a random sample R of cr lines of L, for a sufficiently large constant c > 0, construct
the arrangement A(R) of R (see below for our space-efficient way of constructing A(R)), and
triangulate its cells by connecting the leftmost vertex of each cell to all the other non-adjacent
vertices (handling unbounded cells requires some easy and standard modifications). The overall
number of these triangles is O(r2), and by the random sampling theory of Clarkson and Shor [6,7],
with constant probability, the interior of each such triangle ∆ intersects at most O(nr log r) lines
of L. The set L∆ of lines intersecting the interior of ∆ is the conflict list of ∆. (Handling lines
that meet ∆ only at its boundary is simple and standard.) This completes the first stage of the
construction of [5].

In the second stage we iterate over the triangular cells. For each cell ∆, we count, by brute force
and with no extra working storage, how many lines of L it intersects. If this number is at most n/r,
∆ is a cell of the final cutting. Otherwise, this number is tn/r, for some real number t > 1. We then
sample ct log t lines1 from the conflict list L∆ of ∆, where c is the same constant defined above. We
have already computed |L∆|. If |L∆| > n/r, we put t = |L∆|/(n/r). Next, for each line ℓ of L, we
test whether it crosses ∆ and, if so, add ℓ to a secondary sample T , with probability (ct log t)/|L∆|.
We then construct A(T), clip it to within ∆, and triangulate each resulting cell, using the leftmost-
vertex triangulation scheme as above. Again, the theory of Clarkson and Shor [6, 7] implies that,
with constant probability, each resulting triangle is crossed by at most n/r lines of L. According
to the analysis of [5], with constant probability, the overall number of the resulting triangles is still
O(r2), and each is crossed by at most n/r lines of L. The resulting collection of these triangles is
the desired (1/r)-cutting. (If the above properties do not hold, we abort the current construction

1In fact, this is the expected number of lines in the sample—see below for our sampling strategy.

2

and start a new one; in an expected constant number of trials we will obtain a cutting with the
desired properties.)

This decomposition yields a divide-and-conquer mechanism for collinearity testing, where at
each cell ∆ we solve a subproblem of size n/r. That is, we apply the (dual) base algorithm A
to the lines of L∆. If the algorithm A succeeds for any cell ∆, we report success. Otherwise, we
report that P has no collinear triple. (Handling concurrent triples of lines meeting on ∂∆ is fairly
standard.)

Ensuring small working storage. The standard implementation of this algorithm constructs
the entire cutting, using two rounds of sampling as just described, and stores the conflict lists of the
cells. We cannot afford to do any of these: The overall size of the conflict lists is O(nr), which is
way too large for our goal, but even the size of the cutting, which is O(r2), turns out to be too large.
To overcome these issues, we do not construct and store explicitly the full cutting, but compute it
in an incremental manner, so as to use less storage. To do so, consider the primary sampling stage,
and let R be the random sample that the algorithm chooses; recall that |R| = cr. We construct
A(R) using a line-sweep procedure. The working storage used by line sweeping consists of the
storage used by the y-structure (the search tree along the sweepline λ) and the storage used by the
event queue. The former storage, for cr lines, is clearly O(r), and the latter storage is also O(r) if
we use the variant where the event queue only stores future intersections of pairs of lines that are
currently consecutive along λ.

During the sweep we maintain all the faces of A(R) that λ crosses. Assuming general position
of the lines of R, at each vertex v that the sweep encounters, one face of A(R) ends, one face
begins, one face starts a new edge on its top boundary, and one face starts a new edge on its
bottom boundary. (If we detect a vertex of degree ≥ 3, we terminate the algorithm right away,
as such a concurrency implies collinearity among the points dual to the lines of R.) By the zone
theorem [8], the total complexity of all the faces that λ crosses is O(r). When a face ϕ of A(R)
ends, we triangulate it by chords drawn from its leftmost vertex, and then process these triangles
one at a time. (Special, albeit simple and standard, handling of the unbounded faces is needed.)

Let ∆ be one of these triangles. We compute the size |L∆| of the conflict list L∆ of ∆ by
brute force. If |L∆| ≤ n/r, we construct the list itself, and run the base algorithm A on (the
set of points dual to) L∆. If |L∆| = tn/r, for some t > 1, we construct a secondary sample R∆

of ct log t lines of L∆, in expectation, using the mechanism described above. (A technical issue
that arises here is that t could be large, that is, t ≫ r/ log r, which would then make the working
storage too large. However, as shown in [5], the probability of obtaining a cell with a large value
of t is exponentially small in t, which allows us to assume that this does not happen, and that we
always have t = O(r/ log r), for otherwise we simply scrap the sample and try a new one, as above.)
We then construct the arrangement A(R∆) using the same line-sweeping machinery, but clip each
triangle that we obtain to within ∆, and run the base algorithm on each of these triangles. This
implies that the working storage is O(r) (for maintaining the various samples, and for carrying out
the sweep) plus O(n/r) (for maintaining a single conflict list), plus S0(n/r), the working storage
used by the base algorithm.

We repeat this procedure at each vertex that the primary or secondary sweeps encounter, and
terminate as soon as the base algorithm detects a collinear triple. Otherwise, if we fail in all cells of
the cutting, we report that P has no collinear triple. In the full version we provide the remaining
details of the analysis, which show that the resulting self-reduction does have the performance
bounds stated in the introduction. That is:

3

Theorem 2.1 (a) Suppose that collinearity testing on a set of n points in the plane can be solved in
time T (n) and working storage S(n). Then it can also be solved in expected time O(r2(n+T (n/r)))
and working storage O(r + n/r) + S(n/r), for any integer r with 1 ≤ r ≤ n. (b) Consequently,
collinearity testing on a set of n points in the plane can be solved in randomized expected time O(n2)
and working storage O(n1/2).

Part (b) is obtained by two applications of part (a), both with r = n1/2, where the base algorithm
in the first round is the classical collinearity-testing algorithm, and in the second round it is the
algorithm obtained in the first round. See the full version for details, as well as an extension of our
algorithm to higher dimensions.

References

[1] B. Aronov, M. de Berg, J. Cardinal, E. Ezra, J. Iacono and M. Sharir, Subquadratic algorithms for some
3Sum-hard geometric problems in the algebraic decision tree model, Comput. Geom.: Theory Appl.,
109 (2023), appeared online 15.08.2022. Also in Proc. 32nd Inter. Symp. Alg. Comput. (ISAAC) (2021),
3:1–3:15.

[2] B. Aronov, E. Ezra and M. Sharir, Testing polynomials for vanishing on Cartesian products of planar
point sets: Collinearity testing and related problems. Discrete Comput. Geom., to appear. Also in Proc.
36th Sympos. Computational Geometry (2020), 8:1–8:14, and in arXiv:2003.09533.

[3] L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms and N. Solomon, Subquadratic algorithms for
algebraic generalizations of 3SUM, Discrete Comput. Geom. 61 (2019), 698–734.

[4] T. M. Chan, More logarithmic-factor speedups for 3SUM, (median,+)-convolution, and some geometric
3SUM-hard problems, ACM Trans. Algorithms 16 (2020), 7:1–7:23.

[5] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry, Combi-
natorica 10 (1990), 229–249.

[6] K. L. Clarkson, New applications of random sampling in computational geometry, Discrete Comput.
Geom. 2(2) (1987), 195–222.

[7] K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry, II, Discrete
Comput. Geom. 4 (1989), 387–421.

[8] M. de Berg, O. Cheong, M. van Kreveld and M. H. Overmars, Computational Geometry: Algorithms and
Applications, Springer-Verlag, Santa Clara, CA, USA, 3rd edition, 2008.

[9] A. Freund, Improved subquadratic 3SUM, Algorithmica 77(2) (2017), 440–458.

[10] A. Gajentaan and M. H. Overmars, On a class of O(n2) problems in computational geometry, Comput.
Geom. 5(3) (1995), 165–185.

[11] O. Gold and M. Sharir, Improved bounds for 3SUM, k-SUM, and linear degeneracy, Proc. European
Sympos. Algorithms (2017), 42:1–42:13. Also in arXiv:1512.05279.

[12] A. Grønlund and S. Pettie, Threesomes, degenerates, and love triangles, J. ACM 65 (2018), 22:1–22:25.

[13] D. M. Kane, S. Lovett and S. Moran, Near-optimal linear decision trees for k-SUM and related problems,
J. ACM 66(3) (2019), 16:1-16:18.

[14] A. Lincoln, V. Vassilevska Williams, J. R. Wang and R. R. Williams, Deterministic time-space trade-offs
for k-SUM, Proc. 43rd Int. Colloq. Automata, Languages and Programming (ICALP) (2016), 58:1–58:14.

Acknowledgments. We would like to thank Tsvi Kopelowitz for helpful discussions. Work by Boris
Aronov was partially supported by NSF grants CCF-15-40656 and CCF-20-08551 and by grant 2014/170
from the US-Israel Binational Science Foundation. Work by Esther Ezra was partially supported by Grants
824/17 and 800/22 from the Israel Science Foundation. Work by Micha Sharir was partially supported by
ISF Grant 260/18.

4

	Introduction
	Collinearity testing with small working storage

