
LINEAR-TIME APPROXIMATE HAUSDORFF DISTANCE

OLIVER CHUBET, PARTH PARIKH, DONALD R. SHEEHY, AND SIDDHARTH SHETH

North Carolina State University

1. Introduction

The Hausdorff distance is a metric on compact subsets of a metric space. Let (X, d) be a metric space and

let A and B compact subsets of X. The distance from a point x ∈ X to the set B is d(x, B) := minb∈B d(x, b).

The directed Hausdorff distance is dh(A,B) := maxa∈A d(a, B), and the (undirected) Hausdorff distance

is dH(A,B) := max{dh(A,B), dh(B,A)}. This definition leads directly to a quadratic time algorithm for

finite sets. If one only has access to distances (i.e., no ability to hash points), there is a corresponding

quadratic-time lower bound.

It is not easy to get an asymptotic improvement on the naive Hausdorff distance algorithm without using

an efficient data structure in higher dimensions. Alt et al. [1] give an O(n logn) time algorithm to compute

exact Hausdorff distance in the plane using Voronoi diagrams. Many heuristics are used in practice to speed

up the naive algorithm [8, 7, 2]. Another popular technique is to use a geometric tree data structure [9, 5].

We present an algorithm that computes a (1 + ε)-approximation to the Hausdorff distance between two

sets of total size n in
(
1+ε
ε

)O(d)
n time after time after preprocessing the input sets individually into linear-

size ball trees. The preprocessing takes
(
1
ε

)O(d)
n log∆ time per set.Throughout, we assume that distance

computations take constant time. Although we explicitly consider the spread of the input in the analysis of

our algorithms, there are several cases where we assume that the spread is at most 2O(n).

2. Background

2.1. Doubling Metrics. Let (X, d) be a metric space. A metric ball in X of radius r centered at c is

defined as ball(c, r) := {x ∈ X | d(x, c) ≤ r}. The spread ∆ of A ⊆ X is the ratio of the largest to smallest

pairwise distance of points in A.

The set A is λ-packed if d(a, b) ≥ λ for any distinct a, b ∈ A. A collection of sets C covers A if

A ⊆
⋃
S∈C S. The doubling constant of X is the minimum number ρ such that any ball in X can be

covered by at most ρ balls of half the radius. The doubling dimension is dim(X) := log2 ρ. If dim(X) is

bounded then X is a doubling metric. The following lemma [4] is true for packed and bounded sets.

Lemma 1 (Standard Packing Lemma). If X is a metric space with dim(X) = d and Z ⊂ ball(x, r) for some

x ∈ X is λ-packed then |Z| ≤
(
4r
λ

)d
.

2.2. Greedy Permutations. Let P = (p0, ..., pn−1) be an ordering of n points. The ith-prefix of P is the

set Pi containing points p0, . . . , pi−1. We say P is a greedy permutation if d(pi, Pi) = dH(Pi, P) for all

i > 0. Let α > 1. We say P is an α-approximate greedy permutation if dH(Pi, P) ≤ αd(pi, Pi) for all i > 0.

If d(pi, q) ≤ αd(pi, Pi), then q is an approximate nearest predecessor. We denote the distance to the
1



2 LINEAR-TIME APPROXIMATE HAUSDORFF DISTANCE

(approximate) nearest predecessor of pi by εpi
. Then there is a 1

α
εpi

-packing of the points in the prefix Pi.

The greedy permutation of a set can be computed in O(n log∆) time in low dimensions.

2.3. Greedy Trees. A balltree [6] is defined by recursively partitioning a metric space and representing the

parts in a binary tree. Each node of the tree is a metric ball that covers the points in its subtree.

A greedy tree G is a balltree that uses the greedy permutation P to guide the partition. For each node

ball(p, r), the center p is a point from P. The radius r is the maximum distance to a point of P in the ball.

Any node ball(p, r) with r > 0 has two children, ball(p, rL) and ball(c, rR), where p is the (approximate)

nearest predecessor of c.1 The nodes with radius 0 are leaves; there is a node ball(p, 0) for each element of

P. The greedy tree has 2n − 1 nodes, where |P| = n, and the radii are non-increasing from parent to child.

Given a greedy permutation and the approximate nearest predecessors, the corresponding greedy tree can

be computed in O(n log∆) time (O(n) time to build the tree and O(n log∆) time to compute radii).

3. Approximate Hausdorff Distance

In this section, we describe an algorithm that computes dh(A,B), given sets A and B. As in prior work [3],

we assume that the input is preprocessed into a tree structure; in our case, we use greedy trees. We assume

that nodes of the greedy trees are listed in sorted order by radii. The algorithm proceeds by iterating over the

nodes. Each node gets added as a vertex in the neighbor graph which maintains the following invariants:

• Neighbor Invariant: If d(a, B) = d(a, b) then there is an edge between the nodes storing a and b.

• Partition of Input: Any point in A or B will be stored by some node in the neighbor graph.

• Lower Bounds: A node p in the neighbor graph stores a lower bound l(p) to the distance d(p, B).

This is called a local lower bound. The greatest of these is the global lower bound, denoted L.

The algorithm then proceeds, updating the neighbor graph and pruning edges that are too long to impact

the neighbor invariant. It stops when it reaches a node whose radius is sufficiently small compared to the

global lower bound. At that point the lower bound is a good approximation, and we return it. We update

l(a)

b0

b1

b2

a

l(a)

b0

b1

b2

b3

a

Figure 1. This figure depicts an update of l(a) after replacing a node at b0 with its children.

the local lower bound for a point p as shown in Figure 1 by computing,

l(p) = min
q∈N(p)

{d(p, q) − rq}.

We update L each time we update a local lower bound by comparing the two values (see Figure 2). We

prune nodes that are too far to contain any nearest neighbors (see Section 3.1) and stop when L is a (1+ ε)-

approximation of the exact distance (see Section 3.2). These improvements bound degrees in the neighbor

graph by a constant and so each node can be processed in constant time.

1The (approximate) nearest predecessors need not be unique, however for the sake of construction we assume we have chosen

one.



LINEAR-TIME APPROXIMATE HAUSDORFF DISTANCE 3

L

b0

b1

b2
a0

a1

a2

L

b0

b1

b2

b3

a0
a1

a2

Figure 2. This figure depicts an update of L after replacing the node at b0 with its children.

b2

b3

b0

b1

b4

a

b ′′
b

a ′

a

b ′

Figure 3. This figure shows the role of the pruning condition. On the left, the balls b2 and
b3 are too far away to contain the nearest neighbor of a, so edges (a, b2) and (a, b3) will be
pruned from the neighbor graph. The pruning condition respects the neighbor invariant and
does not prune edge (a, b4). In the right image let a ′ ∈ Ar. For any point a ∈ B(a ′, ra ′),
by the triangle inequality, d(a, B) ≤ ra ′ + d(a ′, b ′). If b ′′ is a pruned center, then no point
b ∈ B(b ′′, rb ′′) can be the nearest neighbor of a, because d(a, b ′) ≤ d(a, b) for any such b.

Algorithm: Hausdorff

Input: Greedy trees GA, GB and approximation factor ε

Output: (1+ ε)-approximation of dh(A,B)

(1) Initialize the neighbor graph N with a node for each root and an edge between them.

(2) Iterate over nodes ball(p, r) of GA ∪GB in non-increasing order of radii while r > (ε
2
)L.

(a) Let the children of ball(p, r) be called ball(p, rL) and ball(c, rR).

(b) Add c to N, and add edges so that N(c) = N(p).

(c) Update the radii, rp = rL and rc = rR.

(d) If p ∈ A, prune N(c) and N(p), and update l(c) and l(p).

(e) If p ∈ B, for each a ∈ N(p), prune N(a) and update l(a).

(3) Return L.

To compute exact dh(A,B), let ε = 0. However our running time guarantees do not hold in that case.

3.1. Pruning Condition. Consider an iteration of the main loop where the node ball(p, r) is being pro-

cessed. Let Ar and Br be the nodes in N from GA and GB respectively. We prune an edge (a, b) ∈ N if

d(a, b ′) + ra < d(a, b) − ra − rb for some b ′ ∈ Br, as shown in Figure 3. The following lemma proves that

the pruning condition does not trim any edge between nodes that contain nearest neighbors. A proof of

correctness for the pruning condition is presented in Appendix ??.



4 LINEAR-TIME APPROXIMATE HAUSDORFF DISTANCE

3.2. Stopping Condition. The running time of an iteration depends on the degree of a vertex in the

neighbor graph. The key to achieving this bound is to stop the algorithm early so that the number of

neighbors can be bounded by a packing argument. Let r be the radius of the current node, and L the global

lower bound. Then, L ≤ dh(A,B) ≤ L + 2r. Moreover, if r ≤ (ε
2
)L, then L is a (1 + ε)-approximation to

dh(A,B) (see Appendix ??).

3.3. Analysis.

Theorem 2. Given two approximate greedy trees for sets A and B of total cardinality n, Hausdorff

computes a (1+ ε)-approximation of dh(A,B) in
(
1+ε
ε

)O(d)
n time.

Proof. In order to bound the degrees of the neighbor graph N, we first establish that the points associated

with the neighbors of a vertex in N are packed. By construction, any node p ∈ N is the center of the left-

or right-child of a greedy tree node with radius at least r. Then by Lemma ??, N is (α−1)r
(2α−1)α -packed. Thus,

|N(a)| ≤
(2α(2α− 1)(L+ 2r)

(α− 1)r

)d
≤
(8α2(1+ ε)

(α− 1)ε

)d
,

for all r ≥ (ε
2
)L, by Lemma 1. Therefore, the number of edges incident to any given node in N is

(
1+ε
ε

)O(d)
.

So we spend
(
1+ε
ε

)O(d)
time for each iteration of the algorithm. This gives a running time of

(
1+ε
ε

)O(d)
n. �

4. Conclusion

We have given a new algorithm for computing the Hausdorff distance and its relatives. After pre-processing

the point sets, individual distance computations take only linear time.

References

[1] Helmut Alt, Bernd Behrends, and Johannes Blömer. Approximate matching of polygonal shapes. Annals of Mathematics

and Artificial Intelligence, 13(3-4):251–265, September 1995.

[2] Yilin Chen, Fazhi He, Yiqi Wu, and Neng Hou. A local start search algorithm to compute exact Hausdorff Distance for

arbitrary point sets. Pattern Recognition, 67:139–148, July 2017.

[3] Daniel P. Huttenlocher, Klara Kedem, and Jon M. Kleinberg. On dynamic voronoi diagrams and the minimum hausdorff dis-

tance for point sets under euclidean motion in the plane. In Proceedings of the Eighth Annual Symposium on Computational

Geometry, SCG ’92, pages 110–119, New York, NY, USA, 1992. Association for Computing Machinery.

[4] Robert Krauthgamer and James R. Lee. Navigating nets: Simple algorithms for proximity search. In Proceedings of the

Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, pages 798–807, USA, 2004. Society for

Industrial and Applied Mathematics.

[5] Sarana Nutanong, Edwin H. Jacox, and Hanan Samet. An incremental Hausdorff distance calculation algorithm. Proceedings

of the VLDB Endowment, 4(8):506–517, May 2011.

[6] Stephen M. Omohundro. Five balltree construction algorithms. Technical Report 562, ICSI Berkeley, 1989.

[7] Jegoon Ryu and Sei-ichiro Kamata. An efficient computational algorithm for Hausdorff distance based on points-ruling-out

and systematic random sampling. Pattern Recognition, 114:107857, June 2021.

[8] Abdel Aziz Taha and Allan Hanbury. An Efficient Algorithm for Calculating the Exact Hausdorff Distance. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 37(11):2153–2163, November 2015.

[9] Dejun Zhang, Fazhi He, Soonhung Han, Lu Zou, Yiqi Wu, and Yilin Chen. An efficient approach to directly compute the

exact Hausdorff distance for 3D point sets. Integrated Computer-Aided Engineering, 24(3):261–277, July 2017.


