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Abstract

In this paper, we propose to use the concept of local fairness for auditing and ranking redistricting
plans. Given a redistricting plan, a deviating group is a population-balanced contiguous region in
which a majority of individuals are of the same interest and in the minority of their respective districts
in the given redistricting plan; such a set of individuals have a justified complaint with how the
redistricting plan was drawn. A redistricting plan with no deviating groups is called locally fair.
We show that the problem of auditing a given plan for local fairness is NP-complete. We present
an MCMC approach for auditing as well as ranking redistricting plans. We also present a dynamic
programming based algorithm for the auditing problem that we use to demonstrate the efficacy of
our MCMC approach. Using these tools, we test local fairness on real-world election data, showing
that it is indeed possible to find plans that are almost or exactly locally fair. Further, we show that
such plans can be generated while sacrificing very little in terms of compactness and existing fairness
measures such as competitiveness of the districts or seat shares.

1 Overview

Redistricting in the United States is the process of partitioning a state into districts, each of which elects
one representative to the Congress, for the most part, via simple majority voting. As of April 2022, or
exactly one year after the US Census Bureau released the results of the 2020 decennial census, 41 out of
the 50 states have finished redrawing the congressional redistricting plans for the next decade [28]. This
process has triggered numerous debates and litigation along the way. Much of this debate centers on
whether the plans are gerrymandered so that one of the two parties gets more representatives. Given its
high-stakes impact and mathematical richness, there has been persistent interest in tackling redistricting
as an algorithmic question since the early 1960s [16].

Within the research community, there is debate around what a “desirable” redistricting plan should
mathematically be. Indeed, it is commonly agreed that “desirable” plans should at the minimum produce
population balanced, contiguous, and compact districts [1]. Beyond this basic agreement, there is still
debate on richer notions of desirability, particularly notions related to the “fairness” of a plan. This
has motivated a long line of recent work [15, 16, 23] as well as software tools [5, 28] on auditing a
given redistricting plan against fairness concepts. Some of these concepts have since been adopted in
Wisconsin’s and Michigan’s redistricting efforts [12]. It should be noted that under most notions of
desirability proposed in literature, the problem of redistricting is computationally hard [26], leading to
the study of heuristic approaches that we outline later.
Global versus Local Fairness. Zooming into fairness criteria, most extant notions of fairness focus
on the global outcomes of the redistricting plans, e.g., whether the seat shares proportionally represent
the demographics [39], or how competitive the districts drawn are [15]. However, it is argued in [6] that
global metrics do not always distinguish between natural gerrymandering – when the distribution of
voters unavoidably prohibits certain globally fair outcomes – and artificial gerrymandering – when the
plans are manipulated to favor a demographic group. This issue is typically addressed via statistical
tests [16]: An MCMC method is used to generate an ensemble of population balanced, contiguous, and
compact plans, and the global fairness score in question is computed for each of these plans, yielding a

∗This work will appear at NeurIPS 2022.
†Equal contributions.

1



histogram of scores. The plan in question is deemed “fair” if its global fairness score is not an outlier in
this histogram.

Furthermore, global fairness, such as proportional seat shares, are desirable and statistically testable,
these seats may not represent the local concerns that a group of voters may have. For instance, imagine
the blue party cares about rising sea levels and climate change, while the red party does not. In North
Carolina, if we give blue voters on the eastern coast one seat, that representative may advocate to mitigate
the impacts of climate change to the coastal residents on the state or federal level. On the other hand, a
better seat share may entail making all districts near the coast red, while making the districts in the
western mountains blue. However, the latter set of representatives may not advocate for issues impacting
the coastal residents, since it is not of local concern to the mountains. This motivates the need for local
fairness as a separate fairness measure, capturing at some level the saying “all politics is local”.

Borrowing the notion of core from cooperative game theory, the work of [6] defines local fairness
notion as follows: Given a redistricting plan, a voter is unsatisfied if the majority demographic in her
district does not match her own demographic. A redistricting plan is locally fair if no group of unsatisfied
voters could deviate and draw a different district such that this group of unsatisfied voters has a majority
in the new district.

As in the scenario above, the advantage of such a local notion of fairness is that it captures justified
complaints of groups of voters, as has happened in recent court judgements [2, 3]. It also provides a way
of assessing enacted plans without resorting to statistical tests, making it more human interpretable and
explainable.
Research Questions. The notion of local fairness is appealing; however, the analysis and results
in [6] are theoretical and apply only to a simplified one-dimensional model. In this paper, we seek to
develop algorithms to audit plans for local fairness, and subsequently systematically study this concept
on real-world electoral data. In particular, we aim to study the following questions:

• Given a redistricting plan, can we efficiently test (or audit) whether the plan is locally fair?

• Are locally fair plans achievable in real redistricting tasks? If not, can we quantify how far a given
plan is from being locally fair?

• Is local fairness empirically compatible with other existing global fairness concepts?

1.1 Related Work

Redistricting as Optimization. We first focus on the task of drawing plans, or computational
redistricting. The idea of using computational tools in redistricting dates back to the 1960s [24, 37].
Since then, an extensive line of work (see [8] for a comprehensive survey) cast the redistricting task
as an optimization problem, in which the input contains only spatial location of individuals, but not
their political affiliations. The objective and constraints capture the population balance, contiguity, and
compactness criteria of the districts. This problem is computationally intractable in the worst case [14],
and multiple algorithmic approaches have been proposed, including Voronoi diagrams [20, 27], local
search [25], simulated-annealing and hill climbing [7], and spatial evolutionary algorithms [30]. On the
flip side, it is argued in [11, 40] that such “neutral” districting plans – as outputs of algorithms without
political inputs – may contain unintentional biases, as well as unexpected outcomes such as “natural
gerrymandering” [9, 19], i.e., the geographic distributions of voters naturally lead to disproportionate
seat shares. Therefore, fairness objectives such as partisan representativeness are typically incorporated
into the redistricting problem as objectives; however, these additional requirements only add to the
computational difficulty of the problem [26].
Ensemble Approaches to Redistricting. Instead of optimizing and finding a single best redistricting
plan, another line of work focuses on generating large ensembles of districting plans, with the hope that
some of these plans will be fair. These methods include Flood Fill [13, 31], Column Generation [21], and
the widely adopted Markov Chain Monte Carlo (MCMC) approach [18, 29, 36]. The latter approach
samples from the space of feasible plans with a bias towards “desirable” or fairness properties. For
instance, it is shown in [33] that the widely used ReCom MCMC method [16] provably biases towards
compact plans. The work of [17] proposes a method for choosing one representative plan from such an
ensemble based on defining distances between plans.
Auditing and Combating Gerrymandering. A somewhat different question from constructing a
desirable plan is the question of auditing a given plan for desirability and fairness. As mentioned before,
ensemble based approaches provide a natural, statistical way of auditing [22, 23]: The properties of the
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plan that is currently enacted is compared against the histogram of the corresponding property on the
ensemble; if the plan is a statistical outlier, then it is considered more “gerrymandered” and hence less
desirable. The recent work of [29] instead uses plans in the ensemble as comparators to identify packing
and cracking in districting plans. On the non-statistical side, numerous approaches to auditing have
also been proposed via appropriate desirability scores. These are either scores based on compactness of
the plan (such as the Reock [34] and Polsby-Popper [32] scores), or scores based on partisan outcomes
generated by the plan (such as the efficiency gap [35], mean-median gap [38], partisan symmetry [39],
and the GEO metric [10]), or scores based on competitiveness of the plan [15]. Many of these measures
are used in publicly available tools [4, 5]. Finally, there is a recent line of work that attempts to eliminate
gerrymandering by completely revamping the winner-takes-all, single-member district mechanism into a
multiwinner election [19].

1.2 Our Contribution

In this paper, we take the conventional view of redistricting as partitioning a planar graph on precincts
into population-balanced, contiguous, and (in a heuristic sense) compact regions. We naturally extend
the local fairness concept proposed in [6] to this task.

We first focus on the question of auditing a given plan for local fairness, that is, the non-existence of a
population-balanced contiguous region in which a majority of voters are of the same party and unhappy
in the given plan. We show that this problem is computationally intractable in the worst case. Our first
contribution is two heuristics for the auditing problem. Our first approach, that is scalable and practical,
extends existing ensemble-based methods in a novel way: We assume the districts in the ensemble are the
only districts to which voters can deviate, and given a plan to be audited, we test each of these districts
as a potential deviation on that plan. Our second approach drills deeper into plans where the ensemble
based method finds no deviating group; indeed, if the method found a deviating group, the plan was
already deemed not locally fair. On the former set, we generate several random spanning trees, and devise
a polynomial time dynamic programming algorithm that audits each tree for local fairness. If any of
these audits finds a deviating group, the original plan was not locally fair. The dynamic program is not
as efficient as the ensemble-based method; however, we provide empirical evidence that the ensemble
method suffices to deem a plan locally fair, and the dynamic program typically does not find additional
deviating groups. Finally, for redistricting plans that are not locally fair, we propose a measure that
quantifies the unfairness of the plans by the portion of population with a justified complaint.

As our second contribution, we empirically study the notion of local fairness on real data on recent
elections in the US. We generate plans using the (by now) standard ReCom [16] ensemble method, and
audit each plan for local fairness using the ensemble method, thereby producing an ordering of the plans
via our unfairness measure. We empirically show that applying the criterion of local fairness prunes the
space of candidate plans considerably, while still returning a set of potential candidates. Most global
and statistical notions of fairness fail to do such pruning, since they are endogenously defined relative
to the order statistics on the ensemble. We further show that not only is local fairness achievable on
real redistricting tasks, but it is also compatible with extant global fairness properties. Indeed, when we
compare locally fair plans and those with many deviating groups, the former tend to be just as compact,
have comparable seat share outcomes, and sacrifice only a small amount of competitiveness. Thus local
fairness can be used as an additional fairness criterion in conjunction with a global fairness criterion. We
also investigate robustness of the local fairness concept, and show that fair redistricting plans remain
consistent across different elections used. We finally show visualizations of fair and unfair plans; in
particular showing that the visualization of deviating groups and likelihood of precincts being unhappy
makes the fairness notion explainable.

Taken together, our results demonstrate local fairness as an effective pruning criterion for candidate
redistricting plans while sacrificing little in other desired properties. We also note that in practice, there
could be other considerations when choosing the “best” plan even among many locally-fair plans; we
leave the question of choosing these considerations to policy makers.

2 Open Questions

Several open questions arise from our work. In terms of algorithm design, it is an open question of whether
there is an approximation algorithm for either the auditing or generation problem, and whether such an
algorithm could take into account compactness. It would also be interesting to extend our methods to
capture additional real-world criteria used in redistricting, such as a penalty for splitting up counties, or
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a requirement for a majority-minority district. In particular, can fair plans be locally modified so that
they remain fair and such real-world criteria are satisfied?

Finally, our exploration of robustness of local fairness to voter turnout is preliminary, since it compares
the outcomes between two election data in one state. It would be interesting to extend our work to a
stochastic setting, where each individual in the population has a “likely voter” score (or probability to
vote), and we need high confidence in the non-existence of a deviating group.
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