
The Complexity of Realizing Free Spaces

Hugo A. Akitaya∗ Maike Buchin† Majid Mirzanezhad‡ Leonie Ryvkin§

Carola Wenk¶

Abstract

The free space diagram is a popular tool to analyze and compute the well-known Fréchet distance, as
the Fréchet distance is used in many application areas, and hence many variants have been established
to cover the specific needs of the various applications. When exploring distance measures related to the
Fréchet distance, one again works with free space diagrams. Often the question arises, whether or not a
certain pattern in the free space diagram is realizable or not, i.e., whether there exists a pair of polygonal
chains that correspond to the pattern in question. We show that the problem is ∃R-complete.

1 Introduction

The Fréchet distance is an important distance measure for curves used in many applications, including
computer aided design, geographic data analysis and the comparison of protein chains. A popular tool for
computing the Fréchet distance of two curves is the free space diagram, which is the cross-product of the
parameter spaces of the curves partitioned into free space and its complement. Free space is the sublevel
set of the distance function for a given ε > 0. For two piecewise linear curves comprised of m and n line
segments parameterized by their natural arc-length parameterizations, it is well-known that the free space
diagram consists of mn cells, and the free space in each cell is a cropped ellipse [3]. The Fréchet distance is
at most ε iff there exists a xy-monotone path in the free space diagram that covers the parameter spaces of
both curves. Hence, to compute the Fréchet distance, one searches for such a path in the free space diagram.
For different applications, many variants of the Fréchet distance have been developed. These are typically
also computed using the free space diagram, which needs to be analyzed for this. Runtimes of the resulting
algorithms usually depend directly on the complexity of the free space diagram. It is known that the Fréchet
distance cannot be computed in subquadratic time unless SETH fails [4].

In this paper we study the inverse problem: Given a free space diagram, do there exist a pair of curves
that generate this free space diagram? The problem was introduced by Buchin, Ryvkin and Wenk [6]. They
give algorithms for a restricted family of inputs and show that maximizing the number of realizing cells is
NP-hard. Here, we show that the problem is indeed ∃R-complete.

2 Definitions and Preliminaries

We use some notation from Buchin et al. [5]. We define a polygonal curve P as the image of a continuous
piecewise linear function γP : [0, ℓP ]→ Rd where ℓP is the geometric length of P . The endpoints of segments
in the image of P are called vertices, and we represent a curve by its sequence of vertices P = ⟨p0, . . . , pn⟩.
Let |pi| =

∑i
j=1 ∥pj−1pj∥ denote the length up to pi, where ∥.∥ denotes the Euclidian norm. Note that

|p0| = 0 and |pn| = ℓP . Without loss of generality, we consider that γP (|pi|) = pi, otherwise we can change
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Figure 1: A given diagram Dε, the curves as computed from the partially full cells, and their free space
diagram Dε(P,Q).

the parametrization of P . For two polygonal curves P = ⟨p0, . . . , pn⟩ and Q = ⟨q0, . . . , qm⟩ in Rd, and a real
number ε > 0, the free space is defined as Fε(P,Q) = {(r, t) | ∥P (r) −Q(t)∥ ≤ ε}. The free space diagram
puts the free space information in an ℓP × ℓQ rectangle divided into an n×m grid. More precisely, we define
Dε(P,Q) as the colored rectangle R = [0, ℓP ]× [0, ℓQ] ⊂ R2, where a point (p, q) ∈ R is colored white if and
only if (p, q) ∈ Fε(P,Q). The grid formed by the set of segments {|pi|×[0, ℓQ] | i ∈ {0, . . . , n}}∪{[0, ℓP ]×|qj | |
j ∈ {0, . . . ,m}}, subdivides R into n×m cells Ci,j .

We define further important terms concerning the free space diagram: A cell Ci,j is called empty (or
gray) if Ci,j ∩ Fε = ∅, and a cell is called full (or white) if Ci,j ∩ Fε = Ci,j . In the intermediate case, where
∅ ≠ Ci,j ∩ Fε ̸= Ci,j , the cell Ci,j is called partially full. We use the following known result stated in [6]:

Lemma 1. Given a partially full free space cell Ci,j, the distance ε and four points on the boundary of the
ellipse within the cell, none of which are mirror images of another one with respect to the ellipse’s major
and minor axes, we can compute the corresponding segments’ relative placement.

A given diagram Dε is called realizable if there exist curves P and Q such that Dε(P,Q) = Dε. In
Figure 1, the given diagram on the left-hand side is not realizable: the curves obtained using Lemma 1 from
the two components in cells C1,1 and C2,2 correspond to the free space diagram on the right-hand side of
the figure, which features an additional component in cell C2,1.

3 ∃R-completeness.

Containment in ∃R can be shown by expressing the problem using real inequalities. We omit the details due
to space restrictions. We reduce from the problem of deciding whether a linkage has a planar realization
which was shown ∃R-hard by Abel et al. [1, 2]. A mechanical linkage is a mechanism made of rigid bars
connected at hinges usually used to convert between two movements. It can be modeled as a weighted graph
G = (V (G), E(G), ℓG) with a function Π : W → R2, where W ⊆ V (G), that represents vertices whose
positions are pinned. A configuration C of a linkage L = (G,Π) is a straight-line drawing of G where the
length of each edge e ∈ E(G) is ℓG(e) and the position of each vertex w ∈W is Π(w). A configuration C is
noncrossing if C is a plane graph.

Abel et al. [1, 2] showed that the linkage realization problem remains hard for a series of restrictions on
the input linkage L. We restate a simplified form of the main theorem in [2] summarizing the restrictions.

Theorem 2. [Simplified from Theorem 2.2.13 in [2]] Given a linkage L = (G,Π) and a combinatorial
embedding (clockwise circular order of edges around each vertex) σ of G, deciding whether there exists a
planar realization of L is ∃R-hard even if the following constraints are enforced:

1. G is connected and the length of every edge is integer.

2. A set of edge disjoint subgraphs H of G can be assigned rigid, meaning that each angle between con-
secutive (in σ) incident edges in H is prescribed from {90◦, 180◦, 270◦, 360◦}. Each subgraph H is a
tree, and an edge in E(G) \ E(H) incident to H must be incident to a leaf of H.
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Figure 2: The angle gadget. (a) The 90◦ configuration and (b) its free-space diagram. (c) and (d) shows the
extremal configurations of the gadget with angles 2 · tan−1(1/2) ≈ 53.13◦ and 270◦, respectively.

3. Only three vertices are pinned (|Π| = 3), all three belong to the same rigid subgraph H (described in
constraint (2)), and they are not collinear.

4. For every noncrossing configuration C of L that satisfies constraints (1–3), we are promised that:

(a) C agrees with σ.

(b) The angles that are not prescribed by constraint (2) lie strictly between 60◦ and 240◦.

(c) The feature size (minimum distance from a vertex to a nonincident edge) is at least a constant ϕ.

We call a vertex rigid if it is incident to at least two edges of the same rigid subgraph H. Else, we call
the vertex nonrigid. By constraint (2), every angle incident to a rigid vertex is prescribed while no angle in
a nonrigid vertex is prescribed (which by (4b) can only vary in the interval (60, 240)).

Reduction. Given L and σ satisfying the constraints in Theorem 2, we construct an instance Dε as follows.
While there is a cycle in G, split one edge in a cycle by placing a new vertex in its midpoint and performing
a vertex split, creating two copies of the new vertex, each attached to half of the original edge. We end
up with a tree T . Let T ′ be the multigraph obtained by doubling each edge of T . Intuitively, Dε will
force curves P and Q to roughly trace a planar Eulerian circuit of T ′ using the combinatorial embedding
σ. (Up to a reflection and translation since Dε can only specify the relative placement of P and Q.) More
precisely, Q will be exactly a planar Eulerian circuit of T ′ while P will trace the same circuit but avoid an
ε-neighborhood of each nonrigid vertex using our angle gadget (described later) which will allow these angles
to lie freely between 60◦ and 240◦. Note that there are two possible ways to choose a planar Eulerian circuit
of T ′ agreeing with σ: circling the “outline” of the embedding σ clockwise or counterclockwise. Both P and
Q trace the “outline” σ counterclockwise.Without loss of generality, we assume ϕ < 6, scaling the linkage
by a constant factor if necessary. We chose ε = 1 so that edges of P and Q that correspond to an edge e
of G will be close to each other and far from other edges. Recall that every partially full cell determines
the relative position of the corresponding pair of edges. Thus, the four edges (two from P and two from Q)
that correspond to the traversal of e will be fixed relative to one another and lie on top of each other. They
then simulate edge e. The angle gadget guarantees flexibility so that the angle between incident edges can
vary accordingly. We add free space components to make the newly introduced vertices rigid: Their relative
position is locked by Lemma 1 forming a 180◦ angle.

We now describe the angle gadget, shown in Figure 2. The gadget is represented by the 12 free-space
cells shown in Figure 2(b). As explained before, the gadget is located at a small neighborhood of a vertex v
of Q and the figure only shows the portion of the free space relative to this neighborhood. We refer to this
angle gadget as AngGadget(v). Note that v is a degree-2 copy of a vertex v∗ of G. For clarity, we refer to
all the copies of v∗ in Q with different labels. (By construction, there are deg(v∗) copies of each v∗ ∈ V (G),
except for the starting vertex of the Eulerian circuit which will have an extra copy.) Let −→e1 and −→e2 be the
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two edges of Q incident to v, and let←−e1 and←−e2 be the corresponding copies going in the opposite direction in
Q, respectively. Locally, P has two edges −→e1 ′ and −→e2 ′ that overlap with −→e1 and −→e2 , respectively. We enforce
the overlap by making all free-space cells relative to −→e1 ′ (resp., −→e2 ′) empty except for the ones relative to −→e1
and ←−e1 (resp., −→e2 and ←−e2) which are partially full, containing an upward and downward 45◦ full strip. The
distance between v and the endpoints of −→e1 ′ and −→e2 ′ closest to v is 2 by Lemma 1. We place four edges
(−−→e1,a,−→e1,b,−→e1,c,−−→e1,d) between −→e1 ′ and −→e2 ′ of lengths 1, 3, 3, and 1 in this order. Only the edges of length 1
have corresponding partially full cells: C−−→e1,a,−→e1 and C−−→e1,a,←−e1 contain half of a disk of radius 1.

Lemma 3. Given a realization of P and Q, assume that (−−→e1,a,−→e1,b,−→e1,c,−−→e1,d) lie to the right of (−→e1 ,−→e2).
Then, −→e1 and ←−e1 (resp., −→e1 and ←−e1) lie exactly on top of each other, and the angle to the right of (−→e1 ,−→e2) is
strictly between 2 · tan−1(1/2) ≈ 53.13◦ and 270◦.

Proof. The fact that −→e1 and ←−e1 lie exactly on top of each other is a consequence of applying Lemma 1 to
−→e1 and −→e1 ′, and to −→e1 ′ and ←−e1 . We now focus on the angle constraint. Note that by Lemma 1, the relative
positions of −→e1 and −−→e1,a (resp., −→e2 and −−→e1,d) is fixed. If we fix the positions of −−→e1,a and −−→e1,d, then the positions
of −→e1,b and −→e1,c are completely determined: There are two points whose distance is 3 from the endpoints of
−−→e1,a and −−→e1,d; one of them causes −→e1,b and −→e1,c to intersect with Q which can’t happen since their free-space
cells are empty. If the angle is 2 · tan−1(1/2) or smaller, the common endpoint of −→e1,c and −−→e1,d would lie in
the closed ε-neighborhood of −→e1 and C−→e1,−−→e1,c would not be empty (Figure 2(c)), a contradiction. If the angle

is 270◦ or greater, a portion of −→e1,b would lie in the closed ε-neighborhood of −→e1 and C−→e1,−−→e1,b would not be

empty (Figure 2(d)), a contradiction. For all values in between there is a placement for −→e1,b and −→e1,c away
from −→e1 and −→e2 , making the section of the free-space diagram exactly as required.

Theorem 4. It is ∃R-complete to decide whether a given a free space diagram Dε is realizable in 2D.

Proof sketch. Given a positive instance of linkage realization, Theorem 2(4) and Lemma 3 guarantee that
we can find a placement of P and Q realizing Dε. The other direction is a little more subtle. Dε forces Q
to trace σ exactly. If there is a valid placement of P and Q one can find a noncrossing configuration of L
obtained by the image of Q. If such a configuration does not satisfy Theorem 2(4), that would contradict
Theorem 2. Thus the promise in Theorem 2(4) must also be fulfilled by the Fréchet realization instance and
the angles in each angle gadget would indeed be between 60◦ and 240◦.
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