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Abstract
This paper outlines the forthcoming book introducing the new area of Geometric Data Science
(GDS), which develops polynomial-time algorithms for continuous metrics and geographic-style maps
for spaces of equivalence classes of real data objects modulo practically important relations.

The major achievement of GDS is the Crystal Isometry Principle extending Mendeleev’s table
of elements to a continuous Crystal Isometry Space containing all known and not yet discovered
periodic crystals considered up to isometry and canonically parameterized by complete invariants.
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1 Computable complete invariants for finite clouds of unlabeled points

The essential examples of data and equivalence are a cloud of m points and an isometry in
Rn, which preserves inter-point distances, hence the rigidity of real structures from molecules
to sculptures. The first step is to build complete invariants that should be also continuous
under perturbation of data in a suitable metric. The continuity requirement is the key novelty
needed for reliable comparisons and optimization, also motivated by noisy measurements.

If all m points have distinct labels, the classical distance matrix is a complete invariant
uniquely determining a cloud of m labeled points up to isometry in Rn. If the given points
are unlabeled, all permutations of m points make comparisons of m! distance matrices too
costly. Hence the following problem for finite unlabeled clouds was highly non-trivial.

▶ Problem 1.1 (mapping continuous spaces of isometry classes). Find a complete isometry
invariant I of finite clouds of unlabeled points in Rn with a continuous metric d. In detail,

(1.1a) invariance : if point clouds A ∼= B are isometric in Rn (meaning that f(A) = B for
an isometry f : Rn → Rn preserving all Euclidean distances ||f(p) − f(q)|| = ||p − q|| for any
points p, q ∈ Rn), then I(A) = I(B), so the invariant I has no false negatives;

(1.1b) completeness : if I(A) = I(B), then A ∼= B are isometric, so I has no false positives;

(1.1c) a metric d on invariant values should satisfy all metric axioms below :
first axiom : d(I(A), I(B)) = 0 if and only if point clouds A ∼= B are isometric,
symmetry : d(I(A), I(B)) = d(I(B), I(A)),
triangle inequality : d(I(A), I(C)) ≤ d(I(A), I(B)) + d(I(B), I(C)) for all A, B, C;

(1.1d) continuity : for any point cloud A ⊂ Rn and ε > 0, there is δ > 0 such that if B is
obtained by perturbing every point of A within its δ-neighborhood, then d(I(A), I(B)) < ε.

(1.1e) computability : for a fixed dimension n, the invariant I(A) and the metric d(A, B) can
be exactly computed in a polynomial time in the number m of points in A, B ⊂ Rn. ■
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One popular isometry invariant of finite clouds of unlabeled points is persistent homology
in Topological Data Analysis. If we consider standard filtrations of Vietoris-Rips, Cech,
Delaunay complexes, then persistent homology is invariant up to isometry of a cloud A, not
up to more general deformations, and cannot distinguish generic families of inputs [5, 3, 13].

The simpler and generically complete isometry invariant is the Pair Distribution Function
or the ordered list of distances between all points of A. Fig. 1 (left) shows one of the
infinitely many counter-examples to completeness: a pair of non-isometric sets with the
same list of pairwise distances. The stronger local distributions of distances [11] is similar to
Pointwise Distance Distribution (PDD) with a continuous Earth Mover’s Distance (EMD),
see Definition 2.1 and [12]. Though PDD is conjectured to be complete for discrete sets up
to isometry in R2, [15, Fig. 6] provides a counter-example to completeness in R3.

Figure 1 Left: point sets K = {(±2, 0), (±1, 1)} and T = {(±2, 0), (−1, ±1)} can not be
distinguished by their six pairwise distances
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S(r) = {0, r, 2 + r, 4} + 8Z and Q(r) = {0, 2 + r, 4, 4 + r} + 8Z for 0 < r ≤ 1 have the same Pair
Distribution Function. All these pairs are distinguished by the PDD invariant in Definition 2.1.

Problem 1.1 was recently solved by the Principal Coordinates Invariant (PCI) in gen-
eral position and Weighted Matrices Invariant (WMI) in all cases, see [8, Theorems 3.5
and 5.4]. For m-point clouds in Rn, a continuous metric on PCIs is computed in time
O(m1.5(logn m)2n), see [8, Theorems 4.6 and 4.7]. The WMIs have a metric computable
in time O(m2n−0.5 logn m + m3n−3) for clouds of exactly m points. For n = 2, the time
O(m3.5 log m) improves the time O(m5 log m) of the only exact algorithm [4] for the Hausdorff
distance under Euclidean motion. Any clouds of up to m points can be compared by EMD
on WMIs in time O((m2n+1 + nm3n−3) log m), see [8, Theorems 6.3 and 6.6].

2 The new Crystal Isometry Principle for all real periodic crystals

The simplest periodic set is a lattice Λ ⊂ Rn consisting of all integer linear combinations
n∑

i=1
civi of a basis v1, . . . , vn whose vectors span the unit cell U = {

n∑
i=1

civi : 0 ≤ ci < 1}.

Figure 2 Left : even for a fixed cell of a lattice Λ, different motifs M can define isometric periodic
sets Λ + M . Right: for almost any perturbation, the symmetries and (the minimum volume of) any
reduced cell discontinuously change, which justifies continuity (1.1d) in Problem 1.1 for periodic sets.

Any periodic point set S is a sum Λ + M = {u⃗ + v⃗ : u ∈ Λ, v ∈ M}, where a motif M is
a finite set of points in the basis of U . Basis vectors of U and atomic coordinates of motif
points (atomic centers) in M form a conventional Crystallographic Information File (CIF).
Fig. 2 (left) shows the ambiguity of the CIF pair (Λ, M) even if a basis of U is fixed.
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Edelsbrunner et al [6] initiated continuous classifications of periodic point sets up to
isometry (as in Problem 1.1 for finite clouds) motivated by the rigidity of crystal structures.

▶ Definition 2.1 (Pointwise Distance Distribution PDD as introduced in [15]). For a motif of
points M = {p1, . . . , pm} in a unit cell U of a lattice Λ, let S ⊂ Rn be a finite set coinciding
with M or a periodic set S = Λ + M . For an integer k ≥ 1, consider the m × k matrix
D(S; k), whose i-th row consists of the ordered distances di1 ≤ · · · ≤ dik measured from pi

to its first k nearest neighbors in the full set S. The rows of D(S; k) are lexicographically
ordered as follows. A row (di1, . . . , dik) is smaller than (dj1, . . . , djk) if a few first distances
coincide: di1 = dj1, . . . , dil = djl for l ∈ {1, . . . , k − 1} and the next (l + 1)-st distances
satisfy di,l+1 < dj,l+1. If w rows are identical to each other, any such group is collapsed to
one row with the weight w/m. For each row, put this weight in the first column. The final
m × (k + 1)-matrix is the Pointwise Distance Distribution PDD(S; k). ■

The matrix D(T ; 3) in Table 1 has two pairs of identical rows, so PDD(T ; 3) consists of
two rows of weight 1

2 below. The matrix D(K; 3) in Table 1 has only one pair of identical
rows, so PDD(K; 3) has three rows of weights 1

2 , 1
4 , 1

4 . Then PDD(T ; 3) ̸= PDD(K; 3)

Table 1 Each point in T, K ⊂ R2 from Figure 1 has ordered distances to three other points.
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[15, Theorem 3.2]: PDD(S; k) is an isometry invariant of a periodic point set S ⊂ Rn;
continuity in [15, Theorem 4.3]: for any k ≥ 1, if each point of S is perturbed within its
ε-neighborhood, PDD(S; k) changes up to 2ε in the Earth Mover’s Distance (EMD).
generic completeness in [15, Theorem 4.4]: any periodic point set S ⊂ Rn in general position
can be uniquely reconstructed up to isometry from a lattice of S (or lattice invariants from
[10, 9] for n = 2, 3), the size m of a motif, and PDD(S; k), where k is big enough so that all
distances in the last column of PDD(S; k) are larger than the double covering radius of S.
[15, Theorem 5.1]: for a fixed dimension n, using fast nearest neighbors [7], PDD(S; k) can
be computed in time O(km(5ν)nVn log(m) log2(k)), where m is the size of a motif of S ⊂ Rn,
Vn is the unit ball volume in Rn, d and ν = d

n
√

Vol[U ]
are the diameter and skewness of U .

The near-linear time algorithm above completed 200+ billion pairwise comparisons of
all 660K+ real periodic crystals in the Cambridge Structural Database (CSD), the world’s
largest dataset of known materials. This huge experiment took only two days on a modest
desktop and detected five pairs of identical ‘needles in a haystack’, see [14, section 7], [15]. In
each pair, the crystals are truly isometric to the last decimal place but one atom is replaced
with a different atom, for example, Cd with Mn for the CSD entries HIFCAB vs JEPLIA.

Since this replacement is physically impossible without perturbing atomic neighbors, five
journals are investigating the integrity of the underlying articles. Traditional comparisons
would take 22+ thousand years on the same machine. Even if some singular structures are
not distinguished by PDD, the cubic time isoset invariant [1] is provably complete.
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Much more importantly, the above experiment has justified the Crystal Isometry Principle
saying that the map {periodic crystal} → {periodic point sets} is injective modulo isometry.

So any real periodic crystal is uniquely determined by the geometry of its atomic centers
without chemical data. Hence all periodic crystals have unique locations in a common Crystal
Isometry Space continuously parameterized by complete invariants. Fig. 3 shows maps [10]
with geographic-style coordinates for 2.6+ million 2D lattices in real CSD crystals [2].

Figure 3 Left: any 2D lattice up to rigid motion and uniform scaling has a unique obtuse
superbase with v0 + v1 + v2 = 0, root products rij = √−vi · vj , and complete invariant (x, y) in the
unit square. Right: the log-scale heat map of all 2D lattices extracted from CSD crystals.
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