
Distance and Time Sensitive Filters for Similarity Search in Trajectory
Datasets

(Extended Abstract)
Madhav Narayan Bhat ∗ Paul Cesaretti† Mayank Goswami‡ Prashant Pandey§

Abstract

Similarity searching is a well-studied problem in tra-
jectory processing, where given a query trajectory, one
wants to report all trajectories in the database similar
to the query. Several works have focused on develop-
ing near neighbor data structures for trajectories under
various metrics, e.g., Frechet distance or Hausdor↵ dis-
tance. A long-standing criticism of such measures is that
they ignore the temporal aspect of time-stamped trajecto-
ries, with some recent works focusing on developing near
neighbor methods that incorporate some of this temporal
information.

Furthermore, all near neighbor data structures use space
that is super-linear (and sometimes a high-degree poly-
nomial) in the size of the trajectory database. With tra-
jectory datasets getting larger everyday, these data struc-
tures may not fit in RAM, and likely stored on external
disk. However, in order to avoid expensive disk-accesses
for every query, a lightweight filter on RAM that reports
YES when there is a trajectory in the database similar to
the query, and NO otherwise (most of the time), is highly
desirable.

This work focuses on optimizing near neighbor data struc-
tures by addressing the two issues above. We present a fil-
ter that answers YES or NO to similarity queries quickly,
incorporates both spatial and temporal aspects of the tra-
jectories, and can be configured to fit in RAM. Our filter
can be used in conjunction with any near neighbor data
structure on disk to provide a two-tiered system for fast
similarity searches in trajectory databases.

Our main technique involves computing sketches from
a suitable-scaled 3D representation of the trajectories,
followed by building distance-sensitive filters for the
sketches. Our experiments first demonstrate that the dis-
tance measure thus obtained is meaningful, both spatially
and temporally. Furthermore, the experiments indicate
a low false negative rate, fast filtering time, and a 95%
space savings on the original dataset, making these filters

∗Columbia University
†Graduate Center, CUNY.
‡Queens College and Graduate Center, CUNY.
§VMware Research

a natural choice in a two-tiered system to reduce process-
ing time in very large trajectory datasets.

1 Introduction

Preprocessing trajectory datasets have several appli-
cations, ranging from social sciences to smart cities
and transport. Some examples are:

1. Tra�c Analysis: The goal is to identify flow
of tra�c in a given, predefined area so as to
locate common bottle neck points which would
suggest areas which could be improved by addi-
tional road networks to alleviate tra�c conges-
tion.

2. Contact Tracing: Here we are looking to iden-
tify a collection of individuals who may have
been in contact with a contagious individual by
returning the set all those that have visited the
same areas or traveled along a similar path.

3. Web Analytics: Here a users web tra�c con-
sists of a sequence of hyperlinks and the goal is
to find users with similar browsing habits.

4. Weather Prediction: Here we are concerned
with forecasting the weather by being able to
track fronts according to a given path of interest.

Each of these applications amounts to searching for
a set of similar trajectories from a large collection
of possible trajectories. The nearest-neighbor search
problem (NNS) asks, given a set S of n points in a
metric space, preprocess them into a data structure
so as to quickly answer queries of the form “given q,
report the nearest neighbor of q in S”, or “given q

and r > 0, report any point in S within distance r of
q”.

1

There exist several data structures for the NNS prob-
lem for general metric spaces (Hamming [20] [6] [4],
Euclidean [20] [1] [5] [6][4], Angular [3], Edit [19], Jac-
card [15], [2], [11]), and also for metrics on the space
of trajectories ([17], [7],[10], [13], [14]).

For trajectory datasets, the most commonly studied
metrics are Hausdor↵ [16], Fréchet [14] [7], [17], and
the Dynamic Time Warping metrics (DTW). Su et
al. [22] provide a thorough overview of trajectory
data analysis results. However, these data structures
su↵er from two potential limitations:

• Most NNS data structures for very large tra-
jectory datasets will not fit in RAM, as their
space usage is typically (a high) polynomial of
the space used to represent the trajectories, and

• NNS data structures for Fréchet, Hausdor↵, and
DTW on trajectories usually treat trajectories
as curves lying in the plane, and therefore ignore
the spatial aspect that is usually present in many
applications.

The decision version of similarity search problem can
be carried out through a distance-sensitive Bloom fil-
ter. A Bloom filter [9] is a succinct data structure
approximating a set to support membership queries
with tunable false positive rate. It is often used to
construct a two-tiered data structure which keeps a
set implicitly on RAM while explicitly storing the
set on SSD. As Bloom filters have only one-sided er-
rors, having no false negatives, they save the user
from making unnecessary trips to disk which incur
an incredible cost in any system application. The
distance-sensitive version generalizes the functional-
ity of Bloom filter to answer queries of the form ”Is
x close to an element in the database?”, where close-
ness is measured under a suitable metric. Goswami
et al. [18] have the such data structure but it is lim-
ited to similarity queries in Hamming space. We aim
in this work to construct a such two-tiered data for
trajectory data.

1.1 Our Results

We show how to build a data structure to compute
the decision version of the approximate nearest neigh-

bor for trajectory data with an added temporal com-
ponent under both the classical Hausdor↵ distance
and recent SketchMin distance of [21] . This data
structure reduces the space complexity of directly
storing the trajectories outright by over 95% and has
low mismatch when considering metrics like Haus-
dor↵ and SketchMin Therefore, we can construct
an e�cient two-tier system for performing similarity
queries on trajectory data. Furthermore, we show a
link between the Hamming space and two other met-
rics, namely Hausdor↵ and SkethcMin, which allows
the possibility of constructing a two-tier system to
perform similarity queries on a large dataset stored
on SSD.

2 Algorithm

The construction of our data structure follows four
steps:

1. Lift each trajectory to 3D by taking into account
its temporal component.

2. Scale the time component, possibly incorporat-
ing a user-defined parameter indicating the im-
portance of the temporal aspect.

3. Construct a binary sketch representation of each
trajectory.

4. Store the binary sketches in a distance-sensitive
Bloom filter data structure of Goswami et al.
[18].

Step 1: Lifting Trajectories. Lift each trajectory
T = (v1, t1), ..., (vl, tl) to 3D by placing the first com-
ponent in the xy-plane and the time in which the a
trajectory arrives at this location on the z-axis.

Step 2: Scaling the Time Component Let s be
the average speed of the trajectories in the dataset.
Also, let w 2 [0, 1] denote a user defined parameter
indicating the importance of the temporal aspect in
the application. w = 0 corresponds to the temporal
aspect being irrelevant, and the trajectory being just
a 2D curve, as is treated in most of the literature. On
the other hand, w = 1 corresponds to the temporal
aspect being as important as the spatial aspect.

2

For each Ti 2 T we scale its time component by sw;
that is swti for all i 2 [n]. For the remainder of this
article we will assume w = 1.

Our time scaling means that one unit of time corre-
sponds to the average speed s of the trajectories in
T . Consider points p = (x, y, t), q = (x0

, y
0
, t) and

r = (x, y, t+ 1), where d(p, q) = s. Here p and q are
equal temporally but are a distance s away. Simi-
larly, p and r occupy the same space but at one unit
time di↵erence; see figure 1.

tt

x

y

p qq

r

t

ss

t+ 1

Figure 1: Scaling the Temporal Component

We would like the scaling to be such that these dis-
tances are the same; that is, d(p, q) = d(p, r) = s,
where d(., .) is the standard Euclidean norm between
two points.

Step 3: Computing Binary Sketches. Deploy
and store a set of d random spheres in 3D S =
{s1, ..., sd}, and for each trajectory, test for its inter-
section with these spheres; see Figure 1. The sketch
�(Tj) for trajectory Tj 2 T is now a d-dimensional
bit vector bj [1, ..., d] where the i-th entry bj [i] = 1 if
and only if Tj contains point pk = (vk, tk) such that
pk 2 sh, for some 1 k l and some 1 h d.

Step 4: Constructing Filter.

Given two sketches �(Ti) and �(Tj) for trajectories
Ti, Tj 2 T , a simple measure of distance between
them is the Hamming distance dH(�(Ti),�(Tj)),
which is defined as the number of positions in which
bi and bj di↵er. As was noted in [8], when spheres are
deployed randomly, similar trajectories will likely in-

Figure 2: Trajectory sketches with respect to its in-
tersection with 10 randomly deployed spheres.

tersect a similar set of spheres which will make their
respective sketches similar.

We now store this collection of binary signatures in
the (r, c, ") distance-sensitive Bloom filter data struc-
ture by Goswami et al. [18].

Such a data structure stores a set S ⇢ {0, 1}d of
points from d-dimensional Hamming space, such that
given a query q 2 {0, 1}d, the data structure reports:

• YES, if q 2 {x 2 {0, 1}d : D(x, S) r}.

• NO, if q 2 {x 2 {0, 1}d : D(x, S) > cr}, with
probability at least 1� ".

whereD(q, S) = minp2S d(q, p) is the minimum Ham-
ming distance between q and any point in S. The
following guarantee is provided:

Theorem 2.1. [18] There exists a (r, c, ")-distance
sensitive approximate membership filter with point-

wise error which requires

O

⇣
n

⇣
r

(c� 1)
+
⇣

c

c� 1

⌘2
log(

n

"
)
⌘⌘

3

bits for any c > 1 on a set S of n points. When c � 2,
the filter uses O(n(r

c
+log(n

"
))) bits, and it is optimal

if r/c log(n") or " 1/n1+o(1)
.

Query: Given a query trajectory Q and user defined
similarity range of interest 0 r d, compute its
sketch �(Q) by testing its intersection with the set
of spheres S. Now given its d-dimensional bit rep-
resentation bQ, feed it to the (r, c, ")-DSBF D. If D
answers YES, then return YES, otherwise return NO.

3 Experiments

The experiments were broken into two phases. In
phase 1 we explore the correlation between Hamming
distance and three other distance measures, namely
that of Hausdor↵, SketchMin of [21], and the Spatio-
Temporal distance of [12]. If the correlation is suf-
ficiently high to establish a link between the two
spaces, we investigate a↵ect of the number of spheres
and size of radius on the correlation between Ham-
ming space and the metric in question. We addition-
ally look into the a↵ect the Hamming weight of each
vector has on this space correlation. Phase 1 deter-
mines the parameter values, namely the number of
spheres and the size of a radius, which will remain
constant through the second set of experiments. In
phase II we look into the rate of mismatch between
the two spaces in correctly labeling trajectories as
being within a user prescribed range before and after
they are stored in the filter. Lastly, we look at the
space savings of using the filter.

3.1 Defining Testing Measures

The metric of interest in analyzing our data structure
is the level of mismatch in labeling between the two
spaces. We define such events to be a positive (nega-
tive) metric mismatch. Here is the formal definition
of both:

Definition 3.1. A Positive Metric Mismatch
(PMM) for a metric space M = (d,X) on query tra-
jectory Q occurs if for r,R, c > 0 there is a signature
for a trajectory T such that dH(�(T),�(Q)) r but
for all trajectories T 0 in our dataset d(T 0

, Q) > cR.

Definition 3.2. A Negative Metric Mismatch
(NMM) for a metric space M = (d,X) on query
trajectory Q occurs if for r,R, c > 0, on all signa-
tures �(T), dH(�(T),�(Q)) > r but there exists a
trajectory T

0 in our dataset such that d(T 0
, Q) cR.

The e�cacy of our data structure is dependant on
how often these events arise and whether or not they
can be reduced. Hence, we are concerned with the
rate at which this occurs over a collection of queries.

Definition 3.3. Let r,R � 0, c > 0 and Q be a
collection of query trajectories. Define the following
sets:

• C
p

Q = {Ti 2 T : dH(�(Q),�(Ti)) r ^
d(Ti, Q) cR ^Q 2 Q}

• C
n

Q = {Ti 2 T : dH(�(Q),�(Ti)) > r ^
d(Ti, Q) > cR ^Q 2 Q}

• I
p

Q = {Ti 2 T : dH(�(Q),�(Ti)) r^d(Ti, Q) >
cR ^Q 2 Q}

• I
n

Q = {Ti 2 T : dH(�(Q),�(Ti)) > r^d(Ti, Q)
cR ^Q 2 Q}

The Positive Metric Mismatch Rate (PMMR)
for a collection of queries Q is defined as
|IpQ|/(|I

p

Q| + |Cn

Q|). Similarly, the Negative Met-
ric Mismatch Rate (NMMR) for a collection of
queries is defined as |InQ|/(|InQ|+ |Cp

Q|).

3.2 Results

Space Correlation: For both Hausdro↵ and
SketchMin the coorrelation is very high, 94.3% and
98.4%, respectively, though the standard deviation
di↵ers widely, with Hausdor↵ being more than 4
times that of Sketchmin. However, the correlation
between Spatio-temporal distance was nearly non-
existent at 17.6% and had no exploitable structure
from which we could learn a function mapping be-
tween the two spaces. The results show that there is
a point at which this correlation is maximized and a
range in which it remains within the 90-th percentile,
but the appropriate radii seems mildly dependent on

4

the dataset itself.

Metric Mismatch Rate of the Pipeline: We
show that the PMMR is between 0 and 12% for Haus-
dor↵ and between 0 and 3% for SketchMin. This
increases by roughly 1% when we involve the filter,
where the increase is due to compression function
used in its construction. The NMMR is negligible
maxing out at 0.08%. Though not zero, such a low
negative metric mismatch rate makes the data struc-
ture report similarity queries with high degree of ac-
curacy which closely imitates the main feature of a
Bloom Filter. Also, we show that DSBF of [18] ac-
tually decreases the NMMR. This is due to the Las
Vegas guarantee of the filter which ensures that if sig-
natures of binary vectors when mapped by the com-
pression function are within a certain threshold then
the Hamming distance between these binary vectors
is with r. Lastly, the results indicate that the pair-
ing of Hamming distance and Sketchmin provides the
lowest PMMR and would provide the best overall
performance if used in a two-tier system to reduce
the processing time in very large trajectory databases
where the underlying metric of interest is SketchMin.

Space Saving: To provide the possibility of con-
structing a two-tiered system with a succinct repre-
sentation of the trajectories on RAM and a nearest-
neighbor data structure on SSD, we need to ensure
that the filter is indeed light-weight and reduces the
space complexity of storing the trajectories outright.
For both datasets we set m = 500 which corresponds
to the number of rows in random matrix used in
the construction of the individual signatures stored
in the filter. This produce m-dimensional bit vec-
tors. The total size of the filter storing 10, 000 is
only 625 kilobytes. For the T-Drive dataset, at 216
megabytes, the space savings is 99.7%. Similarly, for
the Rome dataset, at 46.6 megabytes, the space sav-
ings is 98.6%. We can reduce the space of the filter
further by lowing our value of m but we do so at the
cost of increasing the PMMR.

References

[1] Thomas Dybdahl Ahle. Optimal las vegas local-
ity sensitive data structures. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer

Science (FOCS), pages 938–949. IEEE, 2017.

[2] Thomas Dybdahl Ahle. Subsets and superma-
jorities: Unifying hashing-based set similarity
search. CoRR, abs/1904.04045, 2019.

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven,
Ilya Razenshteyn, and Ludwig Schmidt. Practi-
cal and optimal lsh for angular distance. In Ad-

vances in neural information processing systems,
pages 1225–1233, 2015.

[4] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen,
and Ilya P. Razenshteyn. Beyond locality-
sensitive hashing. In Chandra Chekuri, ed-
itor, Proceedings of the Twenty-Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms,

SODA 2014, Portland, Oregon, USA, January

5-7, 2014, pages 1018–1028. SIAM, 2014.

[5] Alexandr Andoni, Huy L. Nguyen, Aleksan-
dar Nikolov, Ilya Razenshteyn, and Erik Wain-
garten. Approximate near neighbors for general
symmetric norms. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory

of Computing, STOC 2017, page 902–913, New
York, NY, USA, 2017. Association for Comput-
ing Machinery.

[6] Alexandr Andoni and Ilya Razenshteyn. Op-
timal data-dependent hashing for approximate
near neighbors. In Proceedings of the Forty-

Seventh Annual ACM Symposium on Theory of

Computing, STOC ’15, page 793–801, New York,
NY, USA, 2015. Association for Computing Ma-
chinery.

[7] Boris Aronov, Omrit Filtser, Michael Horton,
Matthew J. Katz, and Khadijeh Sheikhan. Ef-
ficient nearest-neighbor query and clustering of
planar curves. In Zachary Friggstad, Jörg-
Rüdiger Sack, and Mohammad R. Salavatipour,
editors, Algorithms and Data Structures - 16th

International Symposium, WADS 2019, Edmon-

5

ton, AB, Canada, August 5-7, 2019, Proceed-

ings, volume 11646 of Lecture Notes in Computer

Science, pages 28–42. Springer, 2019.

[8] Maria Astefanoaei, Paul Cesaretti, Panagiota
Katsikouli, Mayank Goswami, and Rik Sarkar.
Multi-resolution sketches and locality sensitive
hashing for fast trajectory processing. In Pro-

ceedings of the 26th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic

Information Systems, SIGSPATIAL ’18, page
279–288, New York, NY, USA, 2018. Associa-
tion for Computing Machinery.

[9] Burton H. Bloom. Space/time trade-o↵s in hash
coding with allowable errors. Commun. ACM,
13(7):422–426, July 1970.

[10] Matteo Ceccarello, Anne Driemel, and Francesco
Silvestri. FRESH: fréchet similarity with hash-
ing. CoRR, abs/1809.02350, 2018.

[11] Tobias Christiani and Rasmus Pagh. Set simi-
larity search beyond minhash. In Proceedings of

the 49th Annual ACM SIGACT Symposium on

Theory of Computing, pages 1094–1107, 2017.

[12] Anne Driemel, Petra Mutzel, and Lutz Oet-
tershagen. Spatio-temporal top-k similarity
search for trajectories in graphs. CoRR,
abs/2009.06778, 2020.

[13] Anne Driemel and Ioannis Psarros. Ann for time
series under the fréchet distance. In Anna Lu-
biw and Mohammad Salavatipour, editors, Al-
gorithms and Data Structures, pages 315–328,
Cham, 2021. Springer International Publishing.

[14] Anne Driemel, Ioannis Psarros, and Melanie
Schmidt. Sublinear data structures for short
fréchet queries, 2019.

[15] Otmar Ertl. Probminhash–a class of locality-
sensitive hash algorithms for the (probabil-
ity) jaccard similarity. IEEE Transactions on

Knowledge and Data Engineering, 2020.

[16] Martin Farach-Colton and Piotr Indyk. Approx-
imate nearest neighbor algorithms for hausdor↵

metrics via embeddings. In 40th Annual Sympo-

sium on Foundations of Computer Science (Cat.

No. 99CB37039), pages 171–179. IEEE, 1999.

[17] Arnold Filtser, Omrit Filtser, and Matthew J.
Katz. Approximate Nearest Neighbor for Curves
- Simple, E�cient, and Deterministic. In
Artur Czumaj, Anuj Dawar, and Emanuela
Merelli, editors, 47th International Colloquium

on Automata, Languages, and Programming

(ICALP 2020), volume 168 of Leibniz Inter-

national Proceedings in Informatics (LIPIcs),
pages 48:1–48:19, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik.

[18] Mayank Goswami, Rasmus Pagh, Francesco Sil-
vestri, and Johan Sivertsen. Distance sensitive
bloom filters without false negatives. CoRR,
abs/1607.05451, 2016.

[19] Piotr Indyk. Approximate nearest neighbor un-
der edit distance via product metrics. In SODA,
volume 4, pages 646–650, 2004.

[20] Piotr Indyk and Rajeev Motwani. Approximate
nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the Thirtieth

Annual ACM Symposium on Theory of Comput-

ing, STOC ’98, page 604–613, New York, NY,
USA, 1998. Association for Computing Machin-
ery.

[21] Je↵ M. Phillips and Pingfan Tang. Simple
distances for trajectories via landmarks. In
Farnoush Banaei Kashani, Goce Trajcevski,
Ralf Hartmut Güting, Lars Kulik, and Shawn D.
Newsam, editors, Proceedings of the 27th ACM

SIGSPATIAL International Conference on Ad-

vances in Geographic Information Systems,

SIGSPATIAL 2019, Chicago, IL, USA, Novem-

ber 5-8, 2019, pages 468–471. ACM, 2019.

[22] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang
Zhou, and Kai Zheng. A survey of trajectory
distance measures and performance evaluation.
The VLDB Journal, 29(1):3–32, jan 2020.

6

Distance and Time Sensitive Filters for Similarity Search in Trajectory
Datasets

Madhav Narayan Bhat ∗ Paul Cesaretti† Mayank Goswami‡ Prashant Pandey§

Abstract

Similarity searching is a well-studied problem in tra-
jectory processing, where given a query trajectory, one
wants to report all trajectories in the database similar
to the query. Several works have focused on develop-
ing near neighbor data structures for trajectories under
various metrics, e.g., Frechet distance or Hausdor↵ dis-
tance. A long-standing criticism of such measures is that
they ignore the temporal aspect of time-stamped trajecto-
ries, with some recent works focusing on developing near
neighbor methods that incorporate some of this temporal
information.

Furthermore, all near neighbor data structures use space
that is super-linear (and sometimes a high-degree poly-
nomial) in the size of the trajectory database. With tra-
jectory datasets getting larger everyday, these data struc-
tures may not fit in RAM, and likely stored on external
disk. However, in order to avoid expensive disk-accesses
for every query, a lightweight filter on RAM that reports
YES when there is a trajectory in the database similar to
the query, and NO otherwise (most of the time), is highly
desirable.

This work focuses on optimizing near neighbor data struc-
tures by addressing the two issues above. We present a fil-
ter that answers YES or NO to similarity queries quickly,
incorporates both spatial and temporal aspects of the tra-
jectories, and can be configured to fit in RAM. Our filter
can be used in conjunction with any near neighbor data
structure on disk to provide a two-tiered system for fast
similarity searches in trajectory databases.

Our main technique involves computing sketches from
a suitable-scaled 3D representation of the trajectories,
followed by building distance-sensitive filters for the
sketches. Our experiments first demonstrate that the dis-
tance measure thus obtained is meaningful, both spatially
and temporally. Furthermore, the experiments indicate
a low false negative rate, fast filtering time, and a 95%
space savings on the original dataset, making these filters
a natural choice in a two-tiered system to reduce process-
ing time in very large trajectory datasets.

∗Columbia University
†Graduate Center, CUNY.
‡Queens College and Graduate Center, CUNY.
§VMware Research

1 Introduction

Preprocessing trajectory datasets have several appli-
cations, ranging from social sciences to smart cities
and transport. Some examples are:

1. Tra�c Analysis: The goal is to identify flow
of tra�c in a given, predefined area so as to
locate common bottle neck points which would
suggest areas which could be improved by addi-
tional road networks to alleviate tra�c conges-
tion.

2. Contact Tracing: Here we are looking to iden-
tify a collection of individuals who may have
been in contact with a contagious individual by
returning the set all those that have visited the
same areas or traveled along a similar path.

3. Web Analytics: Here a users web tra�c con-
sists of a sequence of hyperlinks and the goal is
to find users with similar browsing habits.

4. Weather Prediction: Here we are concerned
with forecasting the weather by being able to
track fronts according to a given path of interest.

Each of these applications amounts to searching for
a set of similar trajectories from a large collection
of possible trajectories. The nearest-neighbor search
problem (NNS) asks, given a set S of n points in a
metric space, preprocess them into a data structure
so as to quickly answer queries of the form “given q,
report the nearest neighbor of q in S”, or “given q
and r > 0, report any point in S within distance r of
q”.

There exist several data structures for the NNS prob-
lem for general metric spaces (Hamming [21] [6] [4],
Euclidean [21] [1] [5] [6][4], Angular [3], Edit [20], Jac-
card [16], [2], [12]), and also for metrics on the space
of trajectories ([18], [7],[11], [14], [15]).

1

For trajectory datasets, the most commonly studied
metrics are Hausdor↵ [17], Fréchet [15] [7], [18], and
the Dynamic Time Warping metrics (DTW). Su et
al. [24] provide a thorough overview of trajectory
data analysis results. However, these data structures
su↵er from two potential limitations:

• Most NNS data structures for very large tra-
jectory datasets will not fit in RAM, as their
space usage is typically (a high) polynomial of
the space used to represent the trajectories, and

• NNS data structures for Fréchet, Hausdor↵, and
DTW on trajectories usually treat trajectories
as curves lying in the plane, and therefore ignore
the spatial aspect that is usually present in many
applications.

The decision version of similarity search problem can
be carried out through a distance-sensitive Bloom fil-
ter. A Bloom filter [9] is a succinct data structure
approximating a set to support membership queries
with tunable false positive rate. It is often used to
construct a two-tiered data structure which keeps a
set implicitly on RAM while explicitly storing the
set on SSD. As Bloom filters have only one-sided er-
rors, having no false negatives, they save the user
from making unnecessary trips to disk which incur
an incredible cost in any system application. The
distance-sensitive version generalizes the functional-
ity of Bloom filter to answer queries of the form ”Is
x close to an element in the database?”, where close-
ness is measured under a suitable metric. Goswami
et al. [19] have the such data structure but it is lim-
ited to similarity queries in Hamming space. We aim
in this work to construct a such two-tiered data for
trajectory data.

1.1 Our Results

We show how to build a data structure to compute
the decision version of the approximate nearest neigh-
bor for trajectory data with an added temporal com-
ponent under both the classical Hausdor↵ distance
and recent SketchMin distance of [22] . This data
structure reduces the space complexity of directly
storing the trajectories outright by over 95% and has

low mismatch when considering metrics like Haus-
dor↵ and SketchMin Therefore, we can construct
an e�cient two-tier system for performing similarity
queries on trajectory data.

1.2 Preliminaries

Let A be a closed region from which a collection of
trajectories are taken, and let T = {T1, ..., Tn} denote
the dataset consisting of |T | = n trajectories. Here
we define a trajectory as follows:

Definition 1.1 (Trajectory). Let G = (V,E, c) be
an undirected, weighted and connected graph. A tra-
jectory T = (v1, t1), ..., (vl, tl) is a sequence of pairs
such that for all 1 i l the pair (vi, ti) consists of a
vertex vi 2 V and a discrete time interval ti = [ai, bi]
where ai < bi and ai, bi 2 Z.

A standard distance measure between trajectories is
the Hausdor↵ metric which is defined as the max-
imum distance from a point in one trajectory to
the closest point in the other trajectory. Let T1 =
{v1, v2, ..., vl1} and T2{v1, v2, ..., vl2} of lengths l1 and
l2, respectively.

Definition 1.2 (Hausdor↵ Distance). The Hausdor↵
distance between T1 and T2 is defined as

H(T1, T2) = max{max
u2T1

min
v2T2

d(u, v)max
v2T2

min
u2T1

d(v, u)}.

Driemel et al. [13] suggest a new spatio-temporal
psuedometric that can used to build an index on
which one can answer the top-k query problem. Their
metric is defined on trajectories over networks. The
goal is to capture both temporal and spatial aspects
of the trajectory such that those trajectories which
are the within close proximity during the same pe-
riod of time are considered close.

Definition 1.3. [13][Spatio-Temporal Met-
ric] Let T = ((v1, t1), ..., (vl, tl)) and Q =
((u1, s1), ..., (ul, sk)) be two trajectories and s a
time interval, and d(p, q) be the shortest path
distance between p, q on the underlying network

2

from which Q and T arise. The similarity of Q and
T in the time interval s is defined as

Sim(Q,T, s) =
1

|s|
X

(vi,ti)2T

(uj ,sj)2Q

|s \ ti \ sj | · e�d(vi,uj).

Therefore, the distance between trajectories Q and
T during a time interval s is Dist(Q,T, s) = 1 �
Sim(Q,T, s). It can be computed in linear time with
respect to the lengths of the trajectories.

Distances between curves are challenging to com-
pute. For inputs of length m, many standard met-
rics for curves, namely Fréchet, DTW, can be com-
puted in O(m2) time. Astefanoaei et al [8] present a
suite of low-dimensional sketches for trajectory data
that summarize the dataset and drastically reduce
the computation costs associated with near neighbor
search and distance estimation. We present the one
most relevant to our work.

Definition 1.4. [8]((d, r)-Binary Sketch) The Bi-
nary Sketch of a trajectory is a binary vector
Sd,r(T) = e1, ..., ed of length d, defined in terms of
a set of d random but fixed disks of radius r. The
vector element ei = 1 if the disk i intersects trajec-
tory T , otherwise it is 0. The distance between two
such sketches is simply their Hamming distance.

These sketches can obtain provable locality sensitive
hash families for both Hausdor↵ and Fréchet which
are useful in developing NNS data structures with
queries sublinear in the size of the dataset, and show
how the sketches can be used in a novel data struc-
ture for answering similarity queries. Additionally,
Phillips et al. [22] and [23] develop a new class of
distances for objects including lines, hyperplanes and
trajectories based o↵ sketches derived from a collec-
tion of landmarks. A sketch of a geometric object is
defined as

Definition 1.5. [22] Let Q ✓ Rd be a collection of
landmarks, where |Q| = n. For a geometric object
J ⇢ Rd, its sketch representation vQ(J) 2 Rn is a
vector whose i-th coordinate is

vi(J) = inf
p2J

kp� qik,

where qi 2 Q.

The distance between two sketches is referred to as
the SketchMin distance and is the Euclidean distance
between them.

Definition 1.6. [22](SketchMin Distance) Let
J1, J2 ⇢ Rd be two geometric objects. The Sketch-
Min distance between them their sketch representa-
tions is

dQ(J1, J2) = kvQ(J1)� vQ(J2)k.

When the geometric objects are trajectories, this
metric matches or out-performs all other metrics in
terms of computational speed, and was shown to
speed up approximate nearest neighbor data struc-
tures.

2 Algorithm

The construction of our data structure follows four
steps:

1. Lift each trajectory to 3D by taking into account
its temporal component.

2. Scale the time component, possibly incorporat-
ing a user-defined parameter indicating the im-
portance of the temporal aspect.

3. Construct a binary sketch representation of each
trajectory.

4. Store the binary sketches in a distance-sensitive
Bloom filter data structure of Goswami et al.
[19].

Step 1: Lifting Trajectories. Lift each trajectory
T = (v1, t1), ..., (vl, tl) to 3D by placing the first com-
ponent in the xy-plane and the time in which the a
trajectory arrives at this location on the z-axis.

Step 2: Scaling the Time Component Let s be
the average speed of the trajectories in the dataset.

3

Also, let w 2 [0, 1] denote a user defined parameter
indicating the importance of the temporal aspect in
the application. w = 0 corresponds to the temporal
aspect being irrelevant, and the trajectory being just
a 2D curve, as is treated in most of the literature. On
the other hand, w = 1 corresponds to the temporal
aspect being as important as the spatial aspect.

For each Ti 2 T we scale its time component by sw;
that is swti for all i 2 [n]. For the remainder of this
article we will assume w = 1.

Our time scaling means that one unit of time corre-
sponds to the average speed s of the trajectories in
T . Consider points p = (x, y, t), q = (x0, y0, t) and
r = (x, y, t+ 1), where d(p, q) = s. Here p and q are
equal temporally but are a distance s away. Simi-
larly, p and r occupy the same space but at one unit
time di↵erence; see figure 1.

tt

x

y

p qq

r

t

ss

t+ 1

Figure 1: Scaling the Temporal Component

We would like the scaling to be such that these dis-
tances are the same; that is, d(p, q) = d(p, r) = s,
where d(., .) is the standard Euclidean norm between
two points.

Step 3: Computing Binary Sketches. Deploy
and store a set of d random spheres in 3D S =
{s1, ..., sd}, and for each trajectory, test for its inter-
section with these spheres; see Figure 1. The sketch
�(Tj) for trajectory Tj 2 T is now a d-dimensional
bit vector bj [1, ..., d] where the i-th entry bj [i] = 1 if
and only if Tj contains point pk = (vk, tk) such that
pk 2 sh, for some 1 k l and some 1 h d.

Step 4: Constructing Filter.

Figure 2: Trajectory sketches with respect to its in-
tersection with 10 randomly deployed spheres.

Given two sketches �(Ti) and �(Tj) for trajectories
Ti, Tj 2 T , a simple measure of distance between
them is the Hamming distance dH(�(Ti),�(Tj)),
which is defined as the number of positions in which
bi and bj di↵er. As was noted in [8], when spheres are
deployed randomly, similar trajectories will likely in-
tersect a similar set of spheres which will make their
respective sketches similar.

We now store this collection of binary signatures in
the (r, c, ") distance-sensitive Bloom filter data struc-
ture by Goswami et al. [19].

Such a data structure stores a set S ⇢ {0, 1}d of
points from d-dimensional Hamming space, such that
given a query q 2 {0, 1}d, the data structure reports:

• YES, if q 2 {x 2 {0, 1}d : D(x, S) r}.

• NO, if q 2 {x 2 {0, 1}d : D(x, S) > cr}, with
probability at least 1� ".

whereD(q, S) = minp2S d(q, p) is the minimum Ham-
ming distance between q and any point in S. The
following guarantee is provided:

4

Theorem 2.1. [19] There exists a (r, c, ")-distance
sensitive approximate membership filter with point-

wise error which requires

O
⇣
n
⇣ r

(c� 1)
+
⇣ c

c� 1

⌘2
log(

n

"
)
⌘⌘

bits for any c > 1 on a set S of n points. When c � 2,
the filter uses O(n(r

c
+log(n

"
))) bits, and it is optimal

if r/c log(n") or " 1/n1+o(1)
.

Query: Given a query trajectory Q and user defined
similarity range of interest 0 r d, compute its
sketch �(Q) by testing its intersection with the set
of spheres S. Now given its d-dimensional bit rep-
resentation bQ, feed it to the (r, c, ")-DSBF D. If D
answers YES, then return YES, otherwise return NO.

3 Experiments

In this section, we evaluate the e�cacy of our data
structure. We are interested in answering the follow-
ing questions:

• What is the correlation between our sketches
with other metric spaces now that our trajec-
tories have an additional temporal component?

• What is the relationship between the average
Hamming weight for the sketches of the trajec-
tories to the correlation between di↵erent metric
spaces?

• How accurate are the sketches in labeling similar
trajectories according to some other underlying
space of interest?

• How does the filter a↵ect this labeling and can it
still be used to answer similarity queries without
too many mismatches?

• What is the space savings that the filter pro-
vides?

3.1 Dataset

For the evaluation of the data structure, we used the
following datasets:

• The CRAWDAD (Rome) dataset [10] contains
the GPS locations of 320 taxis working in the
city of Rome, Italy for one month in 2014. Each
trace represents one driver over the course of a
single day and is collected every 7 seconds on
tablet which sends this data to a central server,
giving roughly 22 million data points.

• The T-Drive dataset [25] contains the GPS lo-
cations of 10,357 taxis in Beijing. The average
sampling interval is 177 seconds with a distance
of 623 meters, giving 15 million data points in
total.

3.2 Dataset Preprocessing

We constructed 10, 000 trajectories from each dataset
which would be stored and 1000 trajectories that
would be used as queries. These trajectories were
constructed from a given region of the dataset. The
dimensions of the region from which the trajectories
were taken was to ensure a diverse set of trajectories
by selecting from a relatively concentrated area. For
the queries, we selected trajectories from an overlap-
ping, larger region to diversify the query set. These
dimensions are summarized in Table 1

Name |D| Dimensions of Bounding Box

Rome 10,000 50km⇥ 40km⇥ 4hr
T-Drive 10,000 7.5km⇥ 4km⇥ 3hr

Rome Queries 1,000 20km⇥ 20km⇥ 5hr
T-Drive Queries 1,000 12km⇥ 8km⇥ 5hr

Table 1: Region from which the trajectories are taken

Each dataset is preprocessed to make the movement
of the trajectories more standard and to remove much
of the inherent noise. Points lying outside the bound-
ing box for its dataset are ignored or not included in
the description of the trajectory. Similarly, we limit
or completely remove those points in a trajectory that
stay stationary. This limit is set to include five con-
secutive stationary points. Lastly, we break a tra-
jectory into two trajectories if it contains consecutive
points that are over five minutes apart or greater than
1km in distance. This gives trajectories with lengths
of roughly 24km on average for the Beijing T-Drive

5

dataset and query set, where the average number of
GPS points per trajectory is 48. For the Rome taxi
cab dataset the average length is smaller at 13km,
but the average number of GPS points per trajectory
is considerably larger at 224.

3.3 Experimental Setup

Experiments were implemented using Python 3.8.8
and ran on a Windows 10 operating system equipped
with 32 GB @32000 MHz of RAM and an In-
tel core i9-9900k CPU @ 3.60 GHz eight-core pro-
cessor. The source code are online and available
at https://github.com/pcesaretti/trajectory_
approximate_nn_filter.

3.4 Overview

Here we will give an overview of the remainder of
the section. The experiments were broken into two
phases. In phase 1 we explore the correlation between
Hamming distance and three other distance mea-
sures, namely that of Hausdor↵, SketchMin of [22],
and the Spatio-Tempral distance of [13]. If the corre-
lation is su�ciently high to establish a link between
the two spaces, we investigate a↵ect of the number of
spheres and size of radius on the correlation between
Hamming space and the metric in question. We ad-
ditionally look into the a↵ect the Hamming weight
of each vector has on this space correlation. Phase 1
determines the parameter values, namely the number
of spheres and the size of a radius, which will remain
constant through the second set of experiments. In
phase II we look into the rate of mismatch between
the two spaces in correctly labeling trajectories as
being within a user prescribed range before and after
they are stored in the filter. Lastly, we look at the
space savings of using the filter.

3.5 Defining Testing Measures

The metric of interest in analyzing our data structure
is the level of mismatch in labeling between the two
spaces; that is, though the correlation could be high,
there is still the chance that important information
about the trajectory is not maintained by its binary

sketch representation and hence measurements made
within the Hamming space may erroneously imply a
positive (negative) response to a given sketch of a
query trajectory.

Such errors are normally referred to as false positives
and false negatives, but this is not a fair descrip-
tion as this is not a error of the data structure per
say but is a problem with approximating between the
two metric spaces. We define such events to be a pos-
itive (negative) metric mismatch. Here is the formal
definition of both:

Definition 3.1. A Positive Metric Mismatch

(PMM) for a metric space M = (d,X) on query tra-
jectory Q occurs if for r,R, c > 0 there is a signature
for a trajectory T such that dH(�(T),�(Q)) r but
for all trajectories T 0 in our dataset d(T 0, Q) > cR.

Definition 3.2. A Negative Metric Mismatch

(NMM) for a metric space M = (d,X) on query
trajectory Q occurs if for r,R, c > 0, on all signa-
tures �(T), dH(�(T),�(Q)) > r but there exists a
trajectory T 0 in our dataset such that d(T 0, Q) cR.

The e�cacy of our data structure is dependant on
how often these events arise and whether or not they
can be reduced. Hence, we are concerned with the
rate at which this occurs over a collection of queries.

Definition 3.3. Let r,R � 0, c > 0 and Q be a
collection of query trajectories. Define the following
sets:

• Cp

Q = {Ti 2 T : dH(�(Q),�(Ti)) r ^
d(Ti, Q) cR ^Q 2 Q}

• Cn

Q = {Ti 2 T : dH(�(Q),�(Ti)) > r ^
d(Ti, Q) > cR ^Q 2 Q}

• IpQ = {Ti 2 T : dH(�(Q),�(Ti)) r^d(Ti, Q) >
cR ^Q 2 Q}

• InQ = {Ti 2 T : dH(�(Q),�(Ti)) > r^d(Ti, Q)
cR ^Q 2 Q}

The Positive Metric Mismatch Rate (PMMR)

for a collection of queries Q is defined as
|IpQ|/(|I

p

Q| + |Cn

Q|). Similarly, the Negative Met-

ric Mismatch Rate (NMMR) for a collection of
queries is defined as |InQ|/(|InQ|+ |Cp

Q|).

6

https://github.com/pcesaretti/trajectory_approximate_nn_filter
https://github.com/pcesaretti/trajectory_approximate_nn_filter

3.6 Phase 1: Space Correlation

Our first set of experiments investigate the the corre-
lation between Hamming space and three metrics of
interest: Haussdor↵, SketchMin and Spatio-temporal
distance of [13]. For each pair of trajectories we con-
struct a two-dimensional vector whose first coordi-
nate is the Hamming distance between their respec-
tive signatures and whose second coordinate is their
distance under the metric in question and compute
the Pearson coe�cient. As in [8], we grouped the
possible values in 30 bins and show in the plots the
median (blue line) value as well as the 5-95 (pink),
10-90 (purple), and 25-75 (grey) percentiles. For both
Hausdro↵ and SketchMin the coorrelation is very
high, 94.3% and 98.4%, respectively, though the stan-
dard deviation di↵ers widely, with Hausdor↵ being
more than 4 times that of Sketchmin. However, cor-
relation between Spatio-temporal distance was nearly
non-existent at 17.6% and had no exploitable struc-
ture from which we could learn a function mapping
between the two spaces. Figure 3. shows these re-
sults on the Rome dataset; results hold similarly for
the T-drive dataset.

E↵ect of the Number of Sphere and Radius on

the correlation: The above result raises the ques-
tion on whether the correlation can be tuned by the
number and radii of the spheres. For a fixed num-
ber of spheres, we varied the radii between 500m to
30km and computed the Pearson correlation coe�-
cient; this is reflected in each subplot. The results
show that there is a point at which this correlation is
maximized and a range in which it remains within
the 90-th percentile. Both Hausdor↵ and Sketch-
Min maximize their correlation with Hamming space
with 500 spheres, but the appropriate radii seems
mildly dependent on the dataset itself. For the Rome
dataset we have a radius of 22km for both SketchMin
and Hausdor↵ but for the T-drive dataset you need
a larger radius of 30km. As noted in [8], increasing
the number of spheres beyond a certain number does
not improve the correlation and that for a good cor-
relation we need to choose enough spheres that cover
the space from which the trajectories are sampled.
The variance involved is more stable and consistent

for SketchMin than for Hausdor↵, where for 50� 500
spheres we can achieve 90% correlation for any radius
between 18km� 26km.

Hamming Weight and Correlation: Addition-
ally, we checked how the correlation could be af-
fected by the average Hamming weights of our binary
sketches. Intuitively, if the average Hamming weight
of our binary sketches is too high then we loose the
ability to properly label trajectories that are within
a certain threshold in some underlying metric space
which would in turn skew the correlation between
the two spaces. Figure 4e shows that for both spaces
maintaining sketches whose average Hamming weight
is between 30� 60% su�ces to maintain a high cor-
relation, and any higher our correlation degrades.

3.7 Phase 2: Mismatch Error

For our sketches to be an e↵ective, representative
stand-in for trajectory data such that we can per-
form distance queries, we require them to be able
to capture the most important features of a trajec-
tory while being diverse enough appropriately distin-
guish between trajectories that are within a certain
threshold according to some underlying distance met-
ric. The first collection of experiments show correla-
tion between Hamming space and two other spaces
(SketchMin and Hausdor↵) is high enough to learn a
function mapping distances in one space to the dis-
tances the other. Given this, our second set of exper-
iments investigate the e�cacy of the data structure
as a means of being used as a light-weight filter to
perform similarity queries in these spaces. To this
end we look at the rate at which the filter incorrectly
returns a response of YES when the answer is NO
and visa versa.

Constant Parameters: For experiments concern-
ing the Rome dataset, we set the number of spheres
n = 500 and the radius per sphere Rs = 22000, which
were values at which the correlation between Ham-
ming and the two spaces (Hausdor↵ and SketchMin)
is highest. Similarly, for the T-Drive dataset we keep
n = 500 but set Rs = 30000. The parameters of the
distance sensitive filter are set to " = 0.1, cmod = 2,

7

Figure 3: Correlation of binary distances with Hausdor↵, Sketchming, and the Spatio-Temporal Distance of
[13] on the Rome dataset

(a) (b) (c)

(d) (e)

Figure 4: (a) Correlation coe�cient vs number of spheres and radii for Hausdor↵ on 1000 trajectories of the
Rome dataset from a smaller region. (b) Correlation coe�cient vs number of spheres and radii for SketchMin
on 1000 trajectories of the Rome dataset from a smaller region. (c) Region of high correlation for Hausdor↵
on all 10000 trajectories of the T-drive dataset. (d) Consistently high correlation and limited variance for
Sketchmin for 50� 500 spheres. (d) Hamming weight a↵ect on the correlation coe�cient.

cdiv = 1, � = 1, c = 2.

Metric Mismatch Rate of the Pipeline: In this
experiment we simulate the pipeline: On each trial,
we process the 10, 000 trajectories and store them in a
distance-sensitive Bloom filter using the parameters

above. Next we use a sample of 1, 000 trajectories
to compute a linear regression on the correlation be-
tween the spaces. We return the regression line f
produced by averaging slopes of the line found in the
previous step over 3 independent runs (see). After,
we compute the signatures for 1, 000 queries and per-

8

form a similarity search for r = f(R), where R is the
metric radius of the space being tested. Similarity
search is first performed on the sketches themselves
by referencing a precomputed array of the minimum
Hamming distance to all query trajectories, seeing if
this value is within r, and determing if there exist any
trajectories within the dataset that are within cR to
the query trajectory. We then query the filter and
check the validity of its response in the same way.
Using this information we compute positive (nega-
tive) mismatch rate incurred and average over 10 tri-
als each with a new set of random spheres. We test
over R 2 [200, 6000], where R = 6000 is the maxi-
mum distance between trajectories in both Hausdor↵
and SketchMin.

Figure 5 shows the PMMR and NMMR of the
sketches. We see (Figures 5b and 5d) that the PMMR
is between 0 and 12% for Hausdor↵ and between 0
and 3% for SketchMin. This increases by roughly 1%
when we involve the filter, where increase is due to
compression function used in its construction. The
NMMR is negligible maxing out at 0.08%. Though
not zero, such a low negative metric mismatch rate
makes the data structure report similarity queries
with high degree of accuracy which closely imitates
the main feature of a Bloom Filter. Also, figures 5a
and 5c show that DSBF of [19] actually decreases
the NMMR. This is due to the Las Vegas guarantee
of the filter which ensures that if signatures of bi-
nary vectors when mapped by the compression func-
tion are within a certain threshold then the Ham-
ming distance between these binary vectors is with r.
Lastly, the above results indicate that the pairing of
Hamming distance and Sketchmin provides the low-
est PMMR and would provide the best overall perfor-
mance if used in a two-tier system to reduce the pro-
cessing time in very large trajectory databases where
the underlying metric of interest is SketchMin.

3.8 Space Savings

To provide the possibility of constructing a two-tiered
system with a succinct representation of the trajecto-
ries on RAM and a nearest-neighbor data structure
on SSD, we need to ensure that the filter is indeed

light-weight and reduces the space complexity of stor-
ing the trajectories outright. For both datasets we set
m = 500 which corresponds to the number of rows
in random matrix used in the construction of the in-
dividual signatures stored in the filter. This produce
m-dimensional bit vectors. The total size of the filter
storing 10, 000 is only 625 kilobytes. For the T-Drive
dataset, at 216 megabytes, the space savings is 99.7%.
Similarly, for the Rome dataset, at 46.6 megabytes,
the space savings is 98.6%. We can reduce the space
of the filter further by lowing our value of m but we
do so at the cost of increasing the PMMR. These
results are summarized in Table 2.

Dataset Dataset Size Filter Size Space Savings

T-Dirve 216 MB 625 KB 99.7%
Rome 46.6 MB 625 KB 98.6%

Table 2: Space Savings of the Filter Storing the Tra-
jectories

4 Conclusion

The results show that our main techniques of com-
puting sketches from a suitable-scaled 3D representa-
tion of trajectories provides a meaningful substitute
trajectory data which can used to build a distance-
sensitive filter with a low to negligible false nega-
tive rate and manageable false positive rate. Fur-
thermore, we show a link between the Hamming
space and two other metrics, namely Hausdor↵ and
SkethcMin, which allows the possibility of construct-
ing a two-tier system to perform similarity queries on
a large dataset stored on SSD.

9

(a) (b) (c)

(d) (e) (f)

Figure 5: (a) T-Drive - NMMR for Hausdor↵ of the before and after the filter. (b) T-Drive - PMMR for
Haosdor↵ before and after the filter. (c) T-Drive - NMMR for SketchMin of the before and after the filter.
(d) T-Drive - PMMR for SketchMin of the before and after the filter. (e) Comparison of the PMMR rate
between Hausdfor↵ and SketchMin. (f) The computed regression line which we need to find the appropriate
value for r for the specified space.

References

[1] Thomas Dybdahl Ahle. Optimal las vegas local-
ity sensitive data structures. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer

Science (FOCS), pages 938–949. IEEE, 2017.

[2] Thomas Dybdahl Ahle. Subsets and superma-
jorities: Unifying hashing-based set similarity
search. CoRR, abs/1904.04045, 2019.

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven,
Ilya Razenshteyn, and Ludwig Schmidt. Practi-
cal and optimal lsh for angular distance. In Ad-

vances in neural information processing systems,
pages 1225–1233, 2015.

[4] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen,
and Ilya P. Razenshteyn. Beyond locality-

sensitive hashing. In Chandra Chekuri, ed-
itor, Proceedings of the Twenty-Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms,

SODA 2014, Portland, Oregon, USA, January

5-7, 2014, pages 1018–1028. SIAM, 2014.

[5] Alexandr Andoni, Huy L. Nguyen, Aleksan-
dar Nikolov, Ilya Razenshteyn, and Erik Wain-
garten. Approximate near neighbors for general
symmetric norms. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory

of Computing, STOC 2017, page 902–913, New
York, NY, USA, 2017. Association for Comput-
ing Machinery.

[6] Alexandr Andoni and Ilya Razenshteyn. Op-
timal data-dependent hashing for approximate
near neighbors. In Proceedings of the Forty-

10

Seventh Annual ACM Symposium on Theory of

Computing, STOC ’15, page 793–801, New York,
NY, USA, 2015. Association for Computing Ma-
chinery.

[7] Boris Aronov, Omrit Filtser, Michael Horton,
Matthew J. Katz, and Khadijeh Sheikhan. Ef-
ficient nearest-neighbor query and clustering of
planar curves. In Zachary Friggstad, Jörg-
Rüdiger Sack, and Mohammad R. Salavatipour,
editors, Algorithms and Data Structures - 16th

International Symposium, WADS 2019, Edmon-

ton, AB, Canada, August 5-7, 2019, Proceed-

ings, volume 11646 of Lecture Notes in Computer

Science, pages 28–42. Springer, 2019.

[8] Maria Astefanoaei, Paul Cesaretti, Panagiota
Katsikouli, Mayank Goswami, and Rik Sarkar.
Multi-resolution sketches and locality sensitive
hashing for fast trajectory processing. In Pro-

ceedings of the 26th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic

Information Systems, SIGSPATIAL ’18, page
279–288, New York, NY, USA, 2018. Associa-
tion for Computing Machinery.

[9] Burton H. Bloom. Space/time trade-o↵s in hash
coding with allowable errors. Commun. ACM,
13(7):422–426, July 1970.

[10] Lorenzo Bracciale, Marco Bonola, Pierpaolo
Loreti, Giuseppe Bianchi, Raul Amici, and An-
tonello Rabu�. CRAWDAD dataset roma/taxi
(v. 2014-07-17). Downloaded from https://
crawdad.org/roma/taxi/20140717, July 2014.

[11] Matteo Ceccarello, Anne Driemel, and Francesco
Silvestri. FRESH: fréchet similarity with hash-
ing. CoRR, abs/1809.02350, 2018.

[12] Tobias Christiani and Rasmus Pagh. Set simi-
larity search beyond minhash. In Proceedings of

the 49th Annual ACM SIGACT Symposium on

Theory of Computing, pages 1094–1107, 2017.

[13] Anne Driemel, Petra Mutzel, and Lutz Oet-
tershagen. Spatio-temporal top-k similarity
search for trajectories in graphs. CoRR,
abs/2009.06778, 2020.

[14] Anne Driemel and Ioannis Psarros. Ann for time
series under the fréchet distance. In Anna Lu-
biw and Mohammad Salavatipour, editors, Al-
gorithms and Data Structures, pages 315–328,
Cham, 2021. Springer International Publishing.

[15] Anne Driemel, Ioannis Psarros, and Melanie
Schmidt. Sublinear data structures for short
fréchet queries, 2019.

[16] Otmar Ertl. Probminhash–a class of locality-
sensitive hash algorithms for the (probabil-
ity) jaccard similarity. IEEE Transactions on

Knowledge and Data Engineering, 2020.

[17] Martin Farach-Colton and Piotr Indyk. Approx-
imate nearest neighbor algorithms for hausdor↵
metrics via embeddings. In 40th Annual Sympo-

sium on Foundations of Computer Science (Cat.

No. 99CB37039), pages 171–179. IEEE, 1999.

[18] Arnold Filtser, Omrit Filtser, and Matthew J.
Katz. Approximate Nearest Neighbor for Curves
- Simple, E�cient, and Deterministic. In
Artur Czumaj, Anuj Dawar, and Emanuela
Merelli, editors, 47th International Colloquium

on Automata, Languages, and Programming

(ICALP 2020), volume 168 of Leibniz Inter-

national Proceedings in Informatics (LIPIcs),
pages 48:1–48:19, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik.

[19] Mayank Goswami, Rasmus Pagh, Francesco Sil-
vestri, and Johan Sivertsen. Distance sensitive
bloom filters without false negatives. CoRR,
abs/1607.05451, 2016.

[20] Piotr Indyk. Approximate nearest neighbor un-
der edit distance via product metrics. In SODA,
volume 4, pages 646–650, 2004.

[21] Piotr Indyk and Rajeev Motwani. Approximate
nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the Thirtieth

Annual ACM Symposium on Theory of Comput-

ing, STOC ’98, page 604–613, New York, NY,
USA, 1998. Association for Computing Machin-
ery.

11

https://crawdad.org/roma/taxi/20140717
https://crawdad.org/roma/taxi/20140717

[22] Je↵ M. Phillips and Pingfan Tang. Simple
distances for trajectories via landmarks. In
Farnoush Banaei Kashani, Goce Trajcevski,
Ralf Hartmut Güting, Lars Kulik, and Shawn D.
Newsam, editors, Proceedings of the 27th ACM

SIGSPATIAL International Conference on Ad-

vances in Geographic Information Systems,

SIGSPATIAL 2019, Chicago, IL, USA, Novem-

ber 5-8, 2019, pages 468–471. ACM, 2019.

[23] Je↵ M. Phillips and Pingfan Tang. Sketched
mindist. In Sergio Cabello and Danny Z. Chen,
editors, 36th International Symposium on Com-

putational Geometry, SoCG 2020, June 23-26,

2020, Zürich, Switzerland, volume 164 of LIPIcs,
pages 63:1–63:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[24] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang
Zhou, and Kai Zheng. A survey of trajectory
distance measures and performance evaluation.
The VLDB Journal, 29(1):3–32, jan 2020.

[25] Jing Yuan, Yu Zheng, Xing Xie, and
Guangzhong Sun. Driving with knowledge
from the physical world. In Proceedings of the

17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD
’11, page 316–324, New York, NY, USA, 2011.
Association for Computing Machinery.

12

