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ABSTRACT
This paper explores the use of machine learning for estimating

the selectivity of range queries in database systems. Using classic

learning theory for real-valued functions based on fat-shattering

dimension, we show that the selectivity function of a range space

with bounded VC-dimension is learnable. As many popular classes

of queries (e.g., orthogonal range search, inequalities involving lin-

ear combination of attributes, distance-based search, etc.) represent

range spaces with finite VC-dimension, our result immediately im-

plies that their selectivity functions are also learnable. To the best

of our knowledge, this is the first attempt at formally explaining the

role of machine learning techniques in selectivity estimation, and

complements the growing literature in empirical studies in this di-

rection. Supplementing these theoretical results, our experimental

results demonstrate that, empirically, even a basic learning algo-

rithm with generic models is able to produce accurate predictions

across settings, matching state-of-art methods designed for specific

queries, and using training sample sizes commensurate with our

theory.

1 INTRODUCTION
In this paper, we formally model and study the problem of learning

selectivity functions for selection queries in database (DB) systems.

The selectivity of a selection query on a database is defined as the

probability that a randomly chosen tuple from the database satisfies

the query predicate. Estimating query selectivity is a core problem

in the query optimization pipeline, and has a rich history of research

over many decades (see, e.g., [10]). In recent years, the focus has

shifted from traditional optimization methods to machine learning

(ML) techniques (e.g., [4, 11]), with the latter outperforming the

former in empirical studies. In this paper, we establish a learning-

theoretic framework for the selectivity-estimation problem, show

that the estimation problem is indeed learnable for popular classes
of selection queries from a small set of training samples using this

framework.

Our Contributions. First, we formalize the learnability of the

selectivity-estimation problem. Recall that a database is a collection

of tuples, and a selection query is a predicate that selects a subset

of these tuples. The selectivity of a selection query is the proba-

bility that a randomly selected tuple satisfies the query. In order

to learn the selectivity function, we employ the agnostic-learning

framework [5], an extension of the classical PAC learning frame-

work for real-valued functions, where we are given a set of sample

queries and their respective selectivities from a fixed distribution

(the training set), and our goal is to design an algorithm that can

output the selectivity of a new query from the same distribution

with high accuracy (see Figure 1 for an example).

Classical PAC learning theory asserts that a Boolean function is

learnable if its VC-dimension is bounded. Generalizing this notion,

it has been shown that a real-valued function is learnable using
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Figure 1: An illustration of the learned selectivity problem.
There are 20 points in the dataset 𝐷 and 5 training queries
𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5 with their selectivities given by 𝑠𝐷 (𝑅1) = 0.1,
𝑠𝐷 (𝑅2) = 0.3, 𝑠𝐷 (𝑅3) = 0.15, 𝑠𝐷 (𝑅4) = 0.1 and 𝑠𝐷 (𝑅5) = 0.25. The
goal is to estimate the selectivity of an unknown query 𝑅6
(in bold), and the correct answer in this example is 0.25. The
shaded area will be explained in Section 2.3.

finitely many samples if its fat shattering dimension (defined in Sec-

tion 2) is bounded [1, 2, 8]. This reduces the question of learnability

of selectivity functions to bounding their respective fat shattering

dimensions. We further note that selectivity functions correspond

to selection queries on the underlying data. Each selection query,

in turn, is a binary function on the data (i.e., which data items

satisfy the query predicate), and the complexity of a class of binary

functions is captured by its VC-dimension [12]. Our main result

(see Theorem 2.1 below) shows that if a class of selection queries

has bounded VC-dimension, then the fat shattering dimension of

the corresponding selectivity function must also be bounded, and

therefore, the selectivity function for such queries is learnable.

Taking a geometric view, each input range consists of a subset

of points in R𝑑 that lies inside the query region. The above result

implies that the selectivity functions of many popular ranges such

as rectangles, halfspaces, and balls are learnable (see Section 2.3 for

details).

While our framework establishes the learnability of the selec-

tivity of above query types from a small set of training examples,

it does not by itself prescribe any specific model or learning al-

gorithm. As part of establishing the learnability of our selectivity

query, we also need a procedure that, given a set of training samples

and a family of data distributions (e.g. histograms, discrete distri-

butions), constructs a data distribution from the given family that

“best fits” the training samples. Our framework then guarantees

that the learned data distribution estimates the selectivity of any

query chosen from the same distribution as the training samples

with high accuracy. For specific query types (e.g., orthogonal range

queries), there already exists a large body of work on the selectivity-

estimation problem, and our framework now gives them a solid

foundation. To demonstrate the power of our framework beyond

justifying existing methods, we further propose a simple, generic

approach that embodies our theoretical results, and empirically



validates its efficiency using extensive experiments. It is impor-

tant to note that we are not designing this generic approach to

“beat” existing methods with novel or sophisticated features; in fact,

we intentionally avoid sophisticated features so that experimental

comparison can focus on illustrating the power of our unifying

framework instead of the artifacts of extra features. Despite the

simplicity of our approach, our experimental results show that it

performs comparably to the state-of-the-art methods for orthog-

onal range queries. Furthermore, for query classes that have seen

less previous research, such as linear inequality and distance-based

queries, our generic approach also work effectively, demonstrating

the generality of the our theoretical framework. Due to lack of

space, these results are omitted from this abstract and can be found

in [7].

2 LEARNABILITY OF QUERY SELECTIVITY
A range space Σ is a pair (𝑋,R), where 𝑋 is a set of objects and R is

a collection of subsets of 𝑋 called ranges. For example, 𝑋 = R𝑑 and

R can be the set of all 𝑑-dimensional rectangles, halfspaces, or balls.

Let 𝐷 be a probability distribution over 𝑋 . For a given 𝐷 , we define

the selectivity function 𝑠𝐷 : R → [0, 1] as s𝐷 (𝑅) = Pr𝑥∼𝐷 [𝑥 ∈ 𝑅] .
Our goal is to learn the selectivities of the ranges in a range

space Σ under an unknown data distribution from a finite sample

of ranges and their respective selectivities. Formally, we define this

learning task as follows.

2.1 The Learning Framework
Learnability. Following the agnostic learning model proposed

by Haussler [5] (see also [1, 2]), which generalizes the PAC model,

we define learnability in a more general setting. Letℋ be a family

of functions from a domain 𝑌 to [0, 1]. Set 𝑍 = 𝑌 × [0, 1]. For a
function 𝐻 ∈ ℋ, we define the loss function ℓ𝐻 : 𝑍 → [0, 1]. For
𝑧 = (𝑦,𝑤) ∈ 𝑍 , ℓ𝐻 (𝑧) = (𝐻 (𝑦) −𝑤)2. For a probability distribution
𝑄 over 𝑍 and for a function 𝐻 ∈ ℋ, we define

er𝑄 (𝐻 ) =
∫
𝑍

ℓ𝐻 (𝑧)𝑑𝑄 (𝑧) (1)

to be the mean square loss of 𝐻 with respect to distribution 𝑄 .

A learning procedureA is mapping from finite sequences in 𝑍 to

ℋ. Given a training sample z𝑛 = (𝑧1, 𝑧2, · · · , 𝑧𝑛) ∈ 𝑍𝑛
, A returns

a function A(z𝑛). Given 𝜖, 𝛿 ∈ (0, 1) and an integer 𝑛 > 0, we say

that A (𝜖, 𝛿)-learns (agnostically) from 𝑛 random training samples

with respect toℋ if

sup

𝑄

Pr[er𝑄 (A(z𝑛)) ≥ inf

𝐻 ∈ℋ
er𝑄 (𝐻 ) + 𝜖] ≤ 𝛿,

where Pr denotes the probability with respect to a random sample

z𝑛 ∈ 𝑍𝑛
, each of 𝑧1, 𝑧2, · · · , 𝑧𝑛 is drawn independently from 𝑍 at

random according to 𝑄 , and supremum is taken over all distribu-

tions defined on𝑍 . For 𝜖 > 0,ℋ is called 𝜖-learnable if there exists a
function 𝑛0 : [0, 1]2 → N and a learning procedureA such that for

all 𝛿 > 0 and for all 𝑛 ≥ 𝑛0 (𝜖, 𝛿), A (𝜖, 𝛿)-learns from 𝑛 examples

with respect toℋ; 𝑛0 (𝜖, 𝛿) is referred to as the minimum training

set size forℋ. Finally,ℋ is learnable if it is 𝜖-learnable for all 𝜖 > 0.

Returning to the selectivity function of range space Σ = (𝑋,R),
let𝒟 be a set of distributions defined on 𝑋 . Set SΣ,𝒟 = {𝑠𝐷 | 𝐷 ∈
𝒟}, a family of functions from R to [0, 1]. Set 𝑍 = R × [0, 1]. Our
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Figure 2: VC-dimension of Σ = (R2,R□), where R□ is the set
of all two-dimensional rectangles, is 4. (i) is an illustration of
a set of 4 points shattered by R□. On the other hand, no set
𝑌 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5} in R2 can be shattered by R□ in (ii): let
{𝑃1, 𝑃2, 𝑃3, 𝑃4} ⊆ 𝑌 be the subset of (at most 4) points of 𝑌 with
extreme 𝑥- and 𝑦-coordinates. Then any rectangle containing
𝑃1, 𝑃2, 𝑃3, 𝑃4 also contains 𝑃5.

main result is a characterization of learnability of SΣ,𝒟 in terms of

the VC-dimension of Σ, defined below.

VC dimension. A subset 𝑃 ⊆ 𝑋 is shattered by R if {𝑃 ∩𝑅 | 𝑅 ∈
R} = 2

𝑃
. The VC-dimension of R, denoted by VC-dim(Σ), is the size

of the largest subset of 𝑋 that can be shattered by Σ. An example

is given in Figure 2. If the VC-dimension of Σ is not bounded by

a constant, then VC-dim(Σ) = ∞. Our main result, stated in the

theorem below, is that SΣ,𝒟 is learnable if and only if VC-dim(Σ)
is finite.

Theorem 2.1. Let Σ = (𝑋,R) be a range space, let 𝒟 be a set
of distributions defined on 𝑋 , and let 𝜖 ∈ (0, 1) be a parameter. If
VC-dim(Σ) = 𝜆, for some constant 𝜆 > 0, then the family SΣ,𝒟 of se-

lectivity functions is 𝜖-learnable with a training set of size �̃�
(

1

𝜖𝜆+3

)
.1

Conversely, if VC-dim(Σ) = ∞, SΣ,𝒟 is not (agnostically) learnable.

Remark.Note that we do not assume training sample 𝑧𝑖 = (𝑅𝑖 , 𝑠𝑖 ) ∈
𝑍 to be of the form 𝑠𝑖 = 𝑠𝐷 (𝑅𝑖 ) for some data distribution 𝐷 ∈ 𝒟.

They are drawn from some distribution 𝑄 defined on R × [0, 1],
and the goal is to learn the selectivity function in SΣ,𝒟 that mini-

mizes the mean square loss. This is important, which allows us to

decouple training samples from the family of functions, and the

problem just becomes to find a function from the given family that

minimizes the expected loss. This model is more general than the

one assuming training sample in a form of 𝑧𝑖 = (𝑅𝑖 , 𝑠𝐷 (𝑅𝑖 )) for
some data distribution 𝐷 ∈ 𝒟, for example, capturing the noisy

input for learning the selectivity functions.

2.2 Implications of Theorem 2.1
Before proving Theorem 2.1, we give some of its implications. We

begin with the query classes mentioned in the introduction.

Orthogonal Range Queries: The range space Σ□ = (R𝑑 ,R□) for
orthogonal range queries is defined as

R□ = {×𝑑𝑖=1 [𝑎𝑖 , 𝑏𝑖 ] : 𝑎𝑖 , 𝑏𝑖 ∈ R, 𝑎𝑖 ≤ 𝑏𝑖 ,∀𝑖 ∈ [𝑑]}.

It is well known that VC-dim(Σ□) = 2𝑑 [9] (see Figure 2 for 𝑑 = 3),

therefore Theorem 2.1 implies that for any family𝒟 of distributions

defined on R𝑑 and for any 𝜖 > 0, the selectivity functions are 𝜖-

learnable with training set of size �̃�

(
1

𝜖2𝑑+3

)
.

1�̃� (.) to hide lower order terms that are in polylog

(
1

𝜖
, 1

𝛿

)
for constant 𝜆.



Linear Inequality Queries: The range space Σ\ = (R𝑑 ,R\) for
linear inequality queries is defined as

R\ = {𝑅\(𝑎,𝑏 ) : 𝑎 ∈ R𝑑 , 𝑏 ∈ R},

where𝑅\(𝑎,𝑏 ) = {𝑥 ∈ R𝑑 : 𝑎·𝑥 ≥ 𝑏}. It is known thatVC-dim(Σ\) =
𝑑 + 1 [9], therefore Theorem 2.1 implies that for any family 𝒟

of distributions defined on R𝑑 and for any 𝜖 > 0, the selectivity

functions are 𝜖-learnable with training set of size �̃�

(
1

𝜖𝑑+4

)
.

Distance-Based Queries: The range space Σ◦ = (R𝑑 ,R◦) for
distance-based queries is defined as

R◦ = {𝑅◦(𝑎,𝑏 ) : 𝑎 ∈ R𝑑 , 𝑏 ∈ R},

where 𝑅◦(𝑎,𝑏 ) = {𝑥 ∈ R𝑑 : ∥𝑥 − 𝑎∥2 ≤ 𝑏} and ∥·∥ is the Euclidean
norm. It is known that VC-dim(Σ◦) ≤ 𝑑 + 2 [9], therefore Theo-

rem 2.1 implies that for any family𝒟 of distributions defined on

R𝑑 and for any 𝜖 > 0, the selectivity functions are 𝜖-learnable with

training set of size �̃�

(
1

𝜖𝑑+5

)
.

Semi-algebraic Range Queries. A very general class of range

queries is the so-called semi-algebraic range query. A 𝑑-dimensional

semi-algebraic set is subset ofR𝑑 defined by a Boolean formula over

polynomial inequality. For example, 𝑅 = {(𝑥,𝑦) ∈ R2 | (𝑥2 + 𝑦2 ≤
4) ∧ (𝑥2 + 𝑦2 ≥ 1) ∧ (𝑦 − 2𝑥2 ≤ 0)} is a semi-algebraic sets. All

the three above examples are special cases of semi-algebraic range

queries. Let T𝑑,𝑏,Δ be the set of all semi-algebraic sets defined by at

most 𝑏 𝑑-variate polynomial inequalities, each of degree at most

Δ. It is known that the VC-dimension of range space (R𝑑 ,T𝑑,𝑏,Δ)
is a constant 𝜆 := 𝜆(𝑑, 𝑏,Δ). Hence the selectivity functions on

(R𝑑 ,T𝑑,𝑏,Δ) are also learnable for any constants 𝑑,𝑏,Δ.
Semi-algebraic sets enable us to handle range spaces in which

𝑋 is not a set of points in R𝑑 . For example, let B be the set of all

discs in R2. For a query disc 𝐵, let 𝑅𝐵 ⊆ B be the set of discs that

intersect 𝐵. Define R• = {𝑅𝐵 | 𝐵 ∈ B}, and consider the range

space Σ• = (B,R•). We can map each disc in B to a point (𝑥,𝑦, 𝑧)
in R3 where (𝑥,𝑦) is the center of the disc and 𝑧 is its radius. Then
for a query disc 𝐵 centered at (𝑐𝑥 , 𝑐𝑦) and radius 𝑟 , the range 𝑅𝐵
maps to the set

𝛾𝐵 = {(𝑥,𝑦, 𝑧) ∈ R3 | (𝑥 − 𝑐𝑥 )2 + (𝑦 − 𝑐𝑦)2 ≤ (𝑟 + 𝑧)2, 𝑧 ≥ 0}.

SetR3
𝑧≥0 = R

2×R𝑧≥0 and ˆR• = {𝛾𝐵 | 𝐵 ∈ B}. Then Σ• is mapped to

(R3
𝑧≥0,

ˆR•). Since ranges in ˆR are semi-algebraic sets with𝑏 = 1 and

Δ ≤ 2, VC-dim(R3≥0, ˆR•) is finite and hence selectivity functions

on (B,R) are learnable.
We conclude this discussion by giving an example of range space

for which selectivity functions are not learnable.

Polygon range queries with arbitrary number of vertices. Let
C be the set of all convex polygons in R2 with arbitrary number

of vertices. Consider the range space Σ = (R2,C). It is known that

VC-dim(Σ) = ∞ [6], therefore Theorem 2.1 implies that selectivity

functions on Σ are not learnable.

2.3 Proof of Theorem 2.1
We prove Theorem 2.1 using the notion of fat-shattering dimension
introduced by Kearns and Schapire [8], which is a generalization
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Figure 3: 𝑥1, 𝑥2 are 𝛾-shattered by linear functions. we choose
𝐻 to be the linear function whose bit sequence 𝑏2𝑏1 corre-
sponds to 𝐸 (i.e., 𝑏𝑖 = 1 if 𝑥𝑖 ∈ 𝐸).

of VC-dimension, and the results by Alon et al. [1] and Bartlett-

Long [2]. As in Section 2.1, let ℋ be a class of functions from

a domain 𝑋 into [0, 1]. Let 𝛾 ∈ (0, 1/2) be a parameter. We say

that ℋ 𝛾-shatters a subset 𝑉 ⊆ 𝑋 if there is a witness function

𝜎 : 𝑉 → [0, 1] such that for every subset 𝐸 ⊆ 𝑉 , there is a function

𝐻𝐸 ∈ ℋ with

𝐻𝐸 (𝑥) ≥ 𝜎 (𝑥) + 𝛾, ∀𝑥 ∈ 𝐸,

𝐻𝐸 (𝑥) ≤ 𝜎 (𝑥) − 𝛾, ∀𝑥 ∈ 𝑉 \ 𝐸. (2)

An example is shown in Figure 3.

The 𝛾-fat shattering dimension ofℋ, denoted by fatℋ (𝛾), is the
size of the largest subset of 𝑋 that can be 𝛾-shattered by ℋ. If

subsets of unbounded finite size can be 𝛾-shattered by ℋ, then

we set fatℋ (𝛾) = ∞. Note that if ℋ is a class of functions from

𝑋 into {0, 1}, then 𝛾-fat shattering dimension is the same as VC-

dimension. An advantage of 𝛾-fat shattering dimension is that it

is sensitive to the scale at which difference in the function values

are considered important. Alon et al. [1] proved that if fatℋ (𝑐𝜖) is
finite, where 𝑐 ∈ (0, 1) is a suitable constant, thenℋ is 𝜖-learnable.

The bound on the size of the training set was improved by Bartlett

and Long [2]. In particular, their result implies thatℋ is 𝜖-learnable

with training-set size

𝑛0 (𝜖, 𝛿) = 𝑂

(
1

𝜖2

(
fatℋ ( 𝜖

9

) log2 1

𝜖
+ log

1

𝛿

))
.

Returning to the selectivity functions, let Σ = (𝑋,R) be a range
space, let𝒟 be a family of probability distributions on 𝑋 and 𝛾 ∈
(0, 1). Set S := SΣ,𝒟 to be the selectivity functions defined by

𝒟. Our main technical result is that if VC-dim(Σ) = 𝜆, for some

constant 𝜆, then fatS (𝛾) = �̃�

(
1

𝛾𝜆+1

)
. By plugging this result into

the results of [1, 2], we prove the first part of Theorem 2.1.

Let T ⊆ R be a subset 𝛾-shattered by S. To bound fatS (𝛾), it
suffices to prove that |T | = �̃�

(
1

𝛾𝜆+1

)
. First, we partition the ranges

in T based on the values of their respective witnesses 𝜎 (𝑅)2:
T𝑗 = {𝑅 ∈ T : 𝜎 (𝑅) ∈ [( 𝑗 − 1) · 𝛾, 𝑗 · 𝛾], for 𝑗 ∈ [1/𝛾]}.

Lemma 2.2. Suppose Equation (2) is realized for some subset 𝐸 ∈ T𝑗
by 𝑠𝐷 for some distribution 𝐷 ∈ 𝒟. Then, for any pair 𝑅 ∈ 𝐸, 𝑅′ ∈
T𝑗 \ 𝐸, we have

𝑠𝐷 (𝑅) − 𝑠𝐷 (𝑅′) > 𝛾 . (3)

2
Note that although 𝜎 (𝑅) = 1 is excluded by this definition if 1/𝛾 is an integer, it is

a well-defined partition since 𝜎 (𝑅) cannot be equal to 1 for any range 𝑅 ∈ T . This

follows from the observation that if 𝜎 (𝑅) = 1, then Equation (2) cannot be satisfied

for 𝑅 ∈ 𝐸 since 𝐻𝐸 (𝑅) ≤ 1 and 𝛾 > 0.



Now, consider any fixed ordering 𝜋 = ⟨𝑅1, 𝑅2, · · · , 𝑅𝑘 ⟩ of the
ranges in T𝑗 , where 𝑘 = |T𝑗 |. Let us also fix the subset:

𝐸 = {𝑅2𝑖 | 1 ≤ 𝑖 ≤ ⌊𝑘/2⌋} (4)

to be the set of ranges with even index in 𝜋 . We say that an object

𝑥 ∈ 𝑋 crosses a pair of ranges 𝑅, 𝑅′ if 𝑥 ∈ 𝑅 ⊕ 𝑅′, where ⊕ is the

symmetric difference (see Figure 1 for 𝑅1 ⊕ 𝑅3). For 1 ≤ 𝑖 < 𝑘 and

for every 𝑥 ∈ 𝑋 , we define an indicator random variable as follows:

𝐼𝑖,𝑥 =

{
1 if 𝑥 ∈ 𝑅𝑖 ⊕ 𝑅𝑖+1,

0 otherwise,

and let 𝐼𝑥 =
∑𝑘−1
𝑖=1 𝐼𝑖,𝑥 .

Since T is 𝛾-shattered by S, there is a distribution 𝐷𝜋 ∈ 𝒟

that satisfies (2) for 𝐸. The next lemma is a direct consequence of

Lemma 2.2, by summing up over the pairs of ranges 𝑅𝑖 , 𝑅𝑖−1 for
even 𝑖 in T𝑗 :

Lemma 2.3. E𝑥∼𝐷𝜋
[𝐼𝑥 ] > 𝛾 (𝑘 − 1).

The lower bound on E𝑥∼𝐷𝐸
[𝐼𝑥 ] in Lemma 2.3 holds for any or-

dering 𝜋 of the ranges in T𝑗 ; the distribution 𝐷𝜋 obviously depends

on 𝜋 . We now complement this lower bound with an upper bound

on E𝑥∼𝐷𝜋
[𝐼𝑥 ] for a specific ordering 𝜋 of T𝑗 .

Lemma 2.4. There is an ordering 𝑅1, 𝑅2, · · · , 𝑅𝑘 of the ranges in
T𝑗 such that for any distribution 𝐷 defined on 𝑋 , we have:

E𝑥∈𝐷 [𝐼𝑥 ] = 𝑂 (𝑘1−1/𝜆 log𝑘),

where 𝜆 = VC-dim(𝑋,R).

Proof. Let Σ̃ = (𝑋,T𝑗 ) be the range space defined by the ranges
in T𝑗 . Note that VC-dim(Σ̃) ≤ VC-dim(Σ) = 𝜆. Consider the dual

range space Σ̃∗ of Σ̃, where Σ̃∗ = (T𝑗 , {R𝑥 = {𝑅 ∈ T𝑗 : 𝑥 ∈ 𝑅} | 𝑥 ∈
𝑋 }), i.e., the objects of Σ̃∗ are the ranges of T𝑗 and for each object

𝑥 ∈ 𝑋 , we have a dual range in Σ̃∗ consisting of ranges of Σ̃ that

contain 𝑥 . Note that Σ̃∗∗ = Σ̃.
We compute the desired ordering of T𝑗 , using the following re-

sults by Chazelle and Welzl [3]: Let Ξ = (𝑉 , Γ) be a finite range
space with |𝑉 | = 𝑚. We say that a range 𝛾 ∈ Γ crosses a pair

𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 if |𝛾 ∩ {𝑣𝑖 , 𝑣 𝑗 }| = 1. The result in [3] (Theorem 4.3)

proves that there is an ordering 𝑣1, 𝑣2, · · · , 𝑣𝑚 of objects in 𝑉 such

that any range in T crosses 𝑂

(
𝑚1−1/𝜆∗

log𝑚

)
pairs (𝑣𝑖 , 𝑣𝑖+1) for

1 ≤ 𝑖 < 𝑚, where 𝜆∗ is the VC-dimension of the dual range space

of Ξ. Applying this result to Σ̃∗ and using the fact that Σ̃∗∗ = Σ̃,
we obtain an ordering 𝑅1, 𝑅2, · · · , 𝑅𝑘 of T𝑗 such that any range

of Σ̃∗ crosses 𝑂
(
𝑘1−1/𝜆 log𝑘

)
pairs (𝑅𝑖 , 𝑅𝑖+1). By the definition, a

range R𝑥 crosses 𝑅𝑖 , 𝑅𝑖+1 if |R𝑥 ∩ {𝑅𝑖 , 𝑅𝑖+1}| = 1, which is equiv-

alent to saying that 𝑥 ∈ 𝑅𝑖 ⊕ 𝑅𝑖+1. Hence, for any 𝑥 ∈ 𝑋 , there

are 𝑂

(
𝑘1−1/𝜆 log𝑘

)
pairs (𝑅𝑖 , 𝑅𝑖+1) crossed by 𝑥 . Since this bound

holds for every 𝑥 ∈ 𝑋 , we conclude that

E𝑥∼𝐷 [𝐼𝑥 ] = 𝑂

(
𝑘1−1/𝜆 log𝑘

)
. □

We are now ready to bound the size of T𝑗 .

Lemma 2.5. For any 𝑗 ∈ ⌈1/𝛾⌉, |T𝑗 | = 𝑂

(
( 1𝛾 log

1

𝛾 )
𝜆
)
.

Proof. Plugging Lemmas 2.4 and 2.3 together, we conclude

there exists a constant 𝑐 such that

𝛾 · (𝑘 − 1) ≤ 𝑐 · 𝑘1−1/𝜆 log𝑘,

which implies that
𝑘1/𝜆

log𝑘
≤ 2𝑐/𝛾 , or 𝑘 = 𝑂

(
( 1𝛾 log

1

𝛾 )
𝜆
)
. □

Summing this bound over all 𝑗 ∈ ⌈1/𝛾⌉, we conclude that |T | =
�̃�

(
1

𝛾𝜆+1

)
. Hence, the size of any set of query ranges in R that can

be 𝛾-shattered by S is �̃�

(
1

𝛾𝜆+1

)
, which implies the main technical

result of this section.

Lemma 2.6. Let Σ = (𝑋,R) be a range space with VC-dim(Σ) = 𝜆,
let𝒟 be a family of probability distribution over𝑋 , and letS := SΣ,𝒟
be the family of selectivity functions on Σ by 𝒟. For any 𝛾 ∈ (0, 1),
the 𝛾-fat shattering dimension of S is �̃�

(
1

𝛾𝜆+1

)
.

Finally, plugging Lemma 2.6 into the results of Alon et al. [1]

and Bartlett-Long [2], we obtain the first part of Theorem 2.1.

We next turn to the second part of Theorem 2.1. As in Section 2.1,

letℋ be a class of functions from a domain 𝑋 into [0, 1]. Let 𝛾 ∈
[0, 1] be a parameter. Alon et al. [1] proved that if fatℋ (𝜖) = ∞,

then ℋ is not (𝜖2/8 − 𝜏)-learnable for any 𝜏 > 0. Returning to

the selectivity functions S := SΣ,𝒟 defined on the range space

Σ = (𝑋,R) and a family of probability distribution on 𝑋 as 𝒟. Our

second technical result is that if VC-dim(Σ) = ∞, then fatS (𝛾) = ∞
for any 𝛾 ∈ (0, 1/2).

Lemma 2.7. Let Σ = (𝑋,R) be a range space, let 𝒟 be a family
of probability distribution over 𝑋 , and let S := SΣ,𝒟 be the family
of selectivity functions on Σ by 𝒟. If VC-dim(Σ) = ∞, the 𝛾-fat
shattering dimension of S is also ∞, for any 𝛾 ∈ (0, 1/2).

The above lemma proves second part of Theorem 2.1, thereby

completing the proof of Theorem 2.1.
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