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Abstract
We introduce the notion of an ε-cover for a kernel range space. A kernel range space concerns a set

of points X ⊂ Rd and the space of all queries by Gaussian kernel K(p, ·) = exp(−∥p−·∥2). For a point
set X of size n, a query returns a vector of values Rp ∈ Rn, where the ith coordinate (Rp)i = K(p, xi)
for xi ∈ X . An ε-cover is a subset of points Q ⊂ Rd so for any p ∈ Rd that 1

n∥Rp −Rq∥1 ≤ ε for some
q ∈ Q. This is a smooth analog of Haussler’s notion of ε-covers for combinatorial range spaces (e.g.,
defined by subsets of points within a ball query) where the resulting vectors Rp are in {0, 1}n instead of
[0, 1]n. The kernel versions of these range spaces show up in data analysis tasks where the coordinates
may be uncertain or imprecise, and hence one wishes to add some flexibility in the notion of inside and
outside of a query range. Our main result is that, unlike combinatorial range spaces, the size of kernel
ε-covers is independent of the input size n and the dimension d. We obtain a bound of (1/ε)Õ(1/ε2),
where Õ(f(1/ε)) hides log factors in (1/ε). This implies that when one relaxes the notion of boundaries
in range queries, eventually the curse of dimensionality disappears, and may help explain the success of
machine learning in very high-dimensional settings. We also complement this result with a lower bound
of almost (1/ε)Ω(1/ε), showing the exponential dependence on 1/ε is necessary.

1 Introduction
Given a data set X a range space (X,R) is the collection of possible ways that set can be queried; it is a
set of subsets of X defined by ranges R. For a data structure, it specifies the shape of any range query [1].
For machine learning, it categorizes the function class of possible classifiers [13]. For spatial scan statistics,
it restricts the family of regions which might form an anomalous hotspot [6]. In each of these cases, it is
common to allow ε|X| additive error when considering the results of these queries. In that context, an ε-
cover is an important concept; it is a subset Q of all possible subsets in the collection (X,R) so that for
any range R ∈ (X,R) there exists some set Q ∈ Q so that the symmetric difference |Q△R| ≤ ε|X|. In
particular, if one allows ε|X| error, then one only needs to consider each of the above listed data analysis
challenges with respect to the ε-cover Q, not the full collection of possible subsets.

Haussler introduced and bounded the size of ε-covers for ranges spaces with bounded VC-dimension [4].
In particular, if the VC dimension is ν, then there exist ε-covers of size O(1/εν) and may require that size.
It is worth considering the two most common ranges spaces, which includes points X ⊂ Rd and subsets
defined by either halfspaces, or by balls; both have VC-dimension d+1. Note that through a Veronese map,
one can represent any ball query in Rd by a halfspace query in Rd+1. Observe that while the size of the
ε-cover 1/εO(d) does not depend on n = |X| it does however depend exponentially on d.

In this paper, we consider how this changes when we consider kernelized versions of these objects; that is
where ranges are defined by kernels, like Gaussian kernels K(x, q) = exp(−∥x− q∥2). Indeed kernel SVM
is a common way to build non-linear classifiers, and kernelized versions of data structures queries and scan
statistics are also common. Partially motivated by these cases, the complexity of kernel range spaces have
also been studied, and in particular coresets for density approximation. These are samples S ⊂ X (called
ε-KDE-sample or ε-sample for (X,K))) so for every query p ∈ Rd that∣∣∣∑x∈X K(x,p)

|X| −
∑

s∈S K(s,p)

|S|

∣∣∣ = |KDEX(p)− KDES(p)| ≤ ε.

While it is known that for positive and symmetric kernels, a bound of O(d/ε2) for such an ε-KDE coreset
can be derived based on bounds for ball range spaces [5], more remarkably, these coresets can be constructed
of size O(1/ε2) [9, 7, 2], that is with no dependence on d.



We tackle whether a similar result, with no dependence on n or d is possible for an ε-cover of a kernel
range space. In particular, a kernel range space (X,K) is defined by a set of input points X ⊂ Rd, and a
fixed kernel K.In this setting, any range in the kernel range space is defined by a point p ∈ Rd, and reports
(K(p, x1),K(p, x2), . . . ,K(p, xn)) = Rp ∈ Rn, a scalar value (we consider when K(p, x) ∈ [0, 1]) for
each xi ∈ X . This generalizes the notion of a set, where these values are from {0, 1}n instead of [0, 1]n.
An ε-cover of a kernel range space (X,K) is then a set of kernel ranges K(q, ·), defined by a set of points
Q ⊂ Rd, so for any query point p ∈ Rd there exists a q ∈ Q so that

d△(Rp, Rq) =
1

|X|
∑

xi∈X |K(p, xi)−K(q, xi)| = 1
|X|∥Rp −Rq∥1 ≤ ε.

Note, in this paper we consider the Gaussian kernel K(x, y) = e−∥x−y∥2/σ2
in Rd; the parameter σ > 0

for simplicity is elsewhere assumed σ = 1.

2 Our Results
Our main result is that ε-covers for kernel ranges spaces have size complexity independent of n and d. Thus
for constant error (e.g., ε = 0.01 for 1% error), the size of the ε-cover is constant; that is to evaluate these
functions up to a fixed error, one only needs to pre-compute or consider evaluating a fixed number of kernel
range queries. In particular, we show that the size of ε-covers are at most O((1/ε)Õ(1/ε2)); where Õ(f(1/ε))
hides polylogarithmic factors in 1/ε.

Theorem 2.1. Let ε > 0 and X = {x1, . . . , xn} ⊆ Rd. There exist a set of size O
(
(1ε )

O( 1
ε2

ln2( 1
ε
))) that is

an ε-cover of (X,K).

Moreover, we show that this (1/ε)poly(1/ε) is necessary. In particular, we provide a construction that
requires an ε-cover of size (1ε )

Ω(1/ελ) for any λ ∈ (0, 1) in RΩ(1/ελ).

Theorem 2.2. Let ε ∈ (0, 1/3) and d < 1
e3−λ

1
ελ
−1

e for some constant λ ∈ (0, 1) and let X = {e1, . . . , ed} ⊆
Rd be the vertices of the standard (d-1)-simplex. Then the size of any ε-cover for (X,K) is at least
(1/ε)Ω(1/ελ). If d is a constant, then the size of any ε-cover for (X,K) is at least Ω(1/εd).

When viewed in comparison to the ε-cover size bound for traditional range spaces, e.g. for halfspaces or
balls, where the size grows exponentially in d, we believe this result is quite surprising. Almost all learning
or data structure bounds, even approximate ones, have exponential dependence on d in the space of queries
considered. However, this result shows that if one relaxes the boundary of the query, that is there is not a hard
or combinatorial cut-off separating “in” the query or “not in” the query, then this exponential dependence
and curse of dimensionality (eventually) disappears. This should be especially relevant in data analysis
applications where a complete trust in data coordinates is rare, it is common to have high dimensional data,
and this sort of ε-error is tolerated if not expected. We hope this sheds a bit of light onto why learning in such
high-dimensional space is not as challenging as traditional curse-of-dimensionality bounds may suggest.

3 Overview of Techniques and Selected Theorems
One may think (as we initially hoped) that this ε-cover result is a not-too-hard consequence of the dimension-
independent bounds for ε-KDE-coresets. However these results seem to provide the wrong sorts of guaran-
tees; they would work if the definition of the ε-cover had the absolute values outside the sum. Moreover, both
constructions for ε-KDE-coreset rely on properties of reproducing kernels, namely that the kernel density
estimate KDEX can be viewed as a mean in a reproducing kernel Hilbert space. This quantity turns out to
be easy to approximate with sub-gradient descent [7, 2] or sampling [9]. However, the ε-cover is a more
structured summary of a point set, and does not admit such simple analysis.

Our approach at its core uses the simple idea that for a kernel with a bounded support (of value above ε),
one can place a grid around each data point with a gap of ε between grid points. The union of all grid points
is the ε-cover. Naively, this provides a bound of roughly n(1/ε)d for n = |X| points in Rd.
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Theorem 3.1. Consider a point set X of size n in Rd and the Gaussian kernel K. One can construct an
ε-cover of size O(n lnd/2(1/ε)/εd) for the kernel range space (X,K).

Reduction of input size n. For the reduction of the size n, we connect this to ε-samples of (traditional)
ranges spaces, which we call semi-linked to kernels, and their VC-dimension. These semi-linked ranges
are defined as the super-level sets of the difference of two kernel functions. A key insight is that these
semi-linked range spaces allow us to calculate an intermediate object called an ε-cover-sample, via a simple
random sample, and this ε-cover-sample can be converted into an ε-cover. We show for the Gaussian kernel
that this VC-dimension bound is O(d2). So this reduction eliminates the dependence on size n, but increases
the dependence on dimension d.

An ε-cover-sample for X is a set S ⊆ X such that for any p, q ∈ Rd,
∣∣dX△(Rp, Rq) − dS△(Rp, Rq)

∣∣ ≤ ε.
The semi-super-level set of a kernel K with respect to the points p, q ∈ Rd and τ ∈ R+ is

Rp,q,τ = {x ∈ Rd : |K(p, x)−K(q, x)| ≥ τ}.

Moreover, K is said to be semi-linked to a range space (Rd,A) if Rp,q,τ ∈ A for any possible p, q ∈ Rd,
τ ∈ R+. This is extending the idea of super-level sets and linking kernels to range spaces introduced in
Joshi et al. [5]. As an extension of the linking-based result in [5] to ε-cover-samples that are now semi-
linked to an appropriate range space we prove that an ε-sample for (X,A) (i.e. a set S ⊆ X such that
maxA∈A

∣∣ |X∩A|
|X| − |S∩A|

|S|
∣∣ ≤ ε [3]), where A is semi-linked to K, is an ε-cover-sample for X too. The proof

mostly follows the strategy of the similar one in [5]. This allows us to remove the dependency on the size of
X from Theorem 3.1.

Theorem 3.2. One can construct an ε-cover with O
(
s lnd/2(1/ε)/εd

)
points for the kernel range space

(X,K), where s is the size of an ε-sample for (X,A), where A is semi-linked to K.

Removing the dependence on dimension d. Similarly, we also show we can eliminate the dependence
on dimension d by invoking terminal JL [11]; this reduces the dimension to O((1/ε2) lnn). So while it
eliminates the dependence on d, it increases it with respect to the number of points. Luckily, however,
we can combine these reductions together in an iterative inductive framework that shows we can eliminate
dependence on n and d entirely. The first step is calculating the VC-dimension of the semi-super-level sets.

Let Ad = {Rp,q,τ : p, q ∈ Rd, τ > 0}. We have shown that dimVC(Ad) = O(d2). For a range space
(X,A) with VC-dimension ν, a random sample from X of size O((1/ε2)(ν + ln 1/δ)) is an ε-sample with
probability at least 1− δ [12, 8]. Therefore, we get the following corollary.

Corollary 3.3. A random sample from the ground set X ⊂ Rd of size O((1/ε2)(d2 + ln 1/δ)) is an ε-
cover-sample for X with probability at 1 − δ. Hence, O

(
(d2 + ln(1/δ)) lnd/2(1/ε)/εd+2

)
points suffice to

construct an ε-cover for (X,K) with probability at least 1− δ.

The next tool we will make use of to prove Theorem 3.4 (and thus Theorem 2.1) is the concept of ε-
terminal dimensionality reduction from [11]. Let ε ∈ (0, 1) and X = {x1, . . . , xn} ⊆ Rd be arbitrary with
n > 1. Then there exists a function f : Rd → Rm with m = O(ln(n)/ε2) such that for all xi ∈ Rd and
all p ∈ Rd, ∥p− xi∥ ≤ ∥f(p)− f(xi)∥ ≤ (1 + ε)∥p− xi∥.

Now we can prove our main result that gives an input-size-free and dimension-free upper bound on the
size of ε-cover-sample size, which will result in an input-size- and dimension-free upper bound for ε-cover
size (Theorem 2.1).

Theorem 3.4. Let ε > 0, δ ∈ (0, 1) and consider a finite point set X ⊂ Rd. Then with probability at least
1− δ, a random sample of size O

(
1
ε6

ln2( 1
εδ )

)
from X is an ε-cover-sample for X . Consequently, there exist

a set of size O
(
(1ε )

O( 1
ε2

ln2( 1
ε
))) that is an ε-cover of (X,K).
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The intuition behind the proof of Theorem 3.4 is recursively creating ε-cover-samples of ε-cover-samples,
each of smaller size. At the start of each step i we have a size ni and dimension di. We can apply terminal
JL to reduce the dimension to d′i = O((1/ε2) lnni), and then Corollary 3.3 to create an ε-cover-sample
of size (roughly) ni+1 = O((d′i/ε)

2) = O((1/ε)6 lnni). Combining these steps does not immediately
remove the dependence on n (or the initial d), but it does, for instance, push the dependence on n into the
log term. Applying this recursively the dependence on n can eventually be eliminated, but at the cost of a
ln∗(n) error factor (since we accumulate ε-error at each recursive step), which ultimately needs to be folded
back into the size bound, adjusting ε′ = ε/ ln∗(n). Instead we apply an inductive argument (inspired by the
proof of Theorem 12.3 of [10]), so we only need to argue about one step. That is, we show if we apply the
reductions with sufficiently small error parameter ε it can be independent of n and d. It again uses above
simple observation but only once. However, this argument is complicated by the two-stage approach because
the depdence on n and d are linked, and reducing one relies on the other. However, like the recursive method
sketched above, by combining them we can reduce the dependence on both terms.

A Lower Bound on ε-Cover Size. For the lower bound, in low dimensions, the construction works
like one may expect for fixed-radius balls – which when their radius is sufficiently large act like halfspaces.
The size is trivially Ω(1/ε) in R1, and as we add each dimension we add an “orthogonal” point to the
existing dimensions. The ranges we must cover is the cross-product of these distance intervals from points in
each dimension, leading to a (1/ε)d bound for fixed-radius disks. However, interestingly, this construction
stops working for kernels as we approach 1/ε dimensions. Indeed, we complement the upper bound of
(1/ε)Õ(1/ε2) with an example that requires an ε-cover of size (1/ε)Ω(1/ελ) for any λ ∈ (0, 1) in RΩ(1/ελ).

As an overview of the proof, we prove a lemma to find some criteria on d spheres in Rd that can generate
exactly two points in their intersections. Then we use this in another lemma to design a point set that provides
us with the desired lower bound (Theorem 2.2). These two lemmas are not presented here for the sake of page
limit constraint. Finally, notice that assuming a constant dimension d, the upper bound of O(lnd/2(1/ε)/εd)
in Theorem 3.1 is up to logarithmic factors tight with respect to the lower bound of Ω(1/εd).
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