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1 Introduction

In 1995, Gajentaan and Overmars [7] introduced the notion of 3SUM hardness, showing that
a number of problems in computational geometry can not be solved in subquadratic time,
assuming the so-called 3SUM problem can not be solved in subquadratic time.1 The general
approach of proving polynomial lower bounds based on a few conjectures about key problems
has since grown into its own subfield of complexity theory known as fine-grained complexity.
The most popular of these conjectures concern the aforementioned 3SUM problem, All-Pairs-
Shortest-Paths (APSP), Boolean Matrix Multiplication (BMM), Triangle finding in a graph,
Boolean Satisfiability (SAT) and the Orthogonal Vectors problem (2OV) (see for example
the introductory surveys by Bringmann [1] and V. V. Williams [13]).

Pătraşcu [12] launched the study of such polynomial lower bounds for dynamic problems,
where instead of simply computing a function on a single input, we want to be able to update
that input and get the corresponding output of the function without having to recompute it
from scratch. In particular, he introduced the Multiphase problem and showed a polynomial
lower bound on its complexity, conditioned on the hardness of the 3SUM problem. Using
the Multiphase problem as a stepping stone, he showed conditional hardness results for a
variety of dynamic problems. Improvements and other conditional lower bounds for dynamic
problems (data structure problems) have since appeared in the literature. Of particular
interest for the purpose of this work is a paper by Kopelowitz et al. [11] where the approach
of Pătraşcu is improved by showing a tighter reduction from 3SUM to the so-called Set
Disjointness problem (an intermediate problem between 3SUM and the Multiphase problem),
as well as a paper by V. V. Williams and Xu [14], which obtains a similar reduction from the
so-called Exact Triangle problem. Also particularly relevant here is the work of Henzinger
et al. [9], who show that many of the known bounds on dynamic problems can be derived
(and even strengthened) by basing proofs on a hardness conjecture about the Online Boolean
Matrix-Vector Multiplication (OMv) problem which they introduce.

While computational geometry was one of first fields where conditional lower bounds
for algorithms were applied, for example by showing that determining if a point set is in
general position is 3SUM hard [7], the progress in conditional lower bounds for dynamic
problems has not found widespread application to computational geometry; recent work has
been largely confined to improved upper bounds. In this work, we exploit the results of
Pătraşcu, Kopelowitz et al., V. V. Williams and Xu, and Henzinger et al. to give conditional
polynomial lower bounds for a variety of dynamic problems in computational geometry,
based on the hardness of 3SUM, APSP and Online Boolean Matrix-Vector Multiplication.

1 In 2014, Grønlund and Pettie [8] showed that the 3SUM problem can be solved in (slightly) subquadratic
time. The modern formulation thus replaces “subquadratic” with “truly subquadratic”, i.e. O(n2−ε) for
some constant ε > 0.
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2 Conditional Lower Bounds for Dynamic Geometric Measure Problems

Almost all the problems we study here share the common characteristic of being about
computing a single global metric for a set of objects in space subject to updates. Moreover,
in the static case (where there are no updates) most of these metrics can be computed in
worst-case O(n logn) time using standard computational geometry results. In particular, we
show conditional hardness results for orthogonal range marking, maintaining the number
of maximal or extremal points in a set of points in R3, dynamic approximate square set
cover (answering a question by Chan et al. [5]), problems related to Klee’s Measure Problem,
problems related to finding the largest empty disk in a set of points, testing whether a set
of disks covers a given rectangle, and querying for the size of the i’th convex layer of a
set of points in the plane. We also give an unconditional lower bound for the incremental
Hypervolume Indicator problem in R3, where the goal is to maintain the volume of the union
of a set of axis-aligned boxes which all have the origin as one of their vertices.

1.1 Setting and computational model
We work in the standard Word RAM model, with words of w = Θ(logn) bits unless otherwise
stated, and for randomized algorithms we assume access to a perfect source of randomness.
We base our conditional lower bounds on the following well known hardness conjectures.

I Conjecture 1 (3SUM conjecture). The following problem (3SUM) requires n2−o(1) expected
time to solve: given a set of n integers, decide if three of them sum up to 0.

I Conjecture 2 (APSP conjecture). The following problem (APSP) requires n3−o(1) expected
time to solve: given an integer-weighted directed graph G on n vertices with no negative
cycles, compute the distance between every pair of vertices in G.

In addition to being the basis for these standard conjectures in fine-grained complexity,
the 3SUM problem and the APSP problem are related in other ways (see [14]). In particular,
they both fine-grained reduce to the Exact Triangle problem, meaning that if either the
3SUM conjecture or the APSP conjecture is true, then the following conjecture is true.

I Conjecture 3 (Exact Triangle conjecture). The following problem (Exact Triangle) requires
n3−o(1) expected time to solve: given an integer-weighted graph G and a target weight T ,
determine if there is a triangle in G whose edge weights sum to T .

We also consider a conjecture introduced by Henzinger et al. [9], which can be thought of as
a weakening of the informal conjecture which says that “combinatorial” matrix multiplication
on n× n matrices requires essentially cubic time (note that the term “combinatorial” is not
well defined).

I Conjecture 4 (OMv conjecture). The following problem (OMv) requires n3−o(1) expected
time to solve:
We are given a n× n boolean matrix M . We can preprocess this matrix, after which we are
given a sequence of n boolean column-vectors of size n denoted by v1, ..., vn, one by one. After
seeing each vector vi, we must output the product Mvi before seeing vi+1.

1.2 Main results
In the full version [6] of this paper we obtain (conditional) polynomial lower bounds for a
variety of dynamic geometric problems, and an unconditional bound for the incremental
Hypervolume Indicator problem in R3. Our bounds are stated as inequalities which imply
trade-offs between achievable update and query times. The lower bounds we get on the
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Problem Upper Bound Lower Bound

From Exact Triangle:
n1/4−o(1) †

From OMv:
n1/2−o(1) †

Square Range Marking Õ(n1/2) †,‡ [2]

Counting Extremal Points in R3

O∗(n7/8) † [3]

O∗(n11/12) ‡ [4]

From Exact Triangle:
n1/5−o(1) †,‡

n1/4−o(1) ‡,$

From OMv:
n1/2−o(1) †,‡

Largest Empty Disk in Query Region

Largest Empty Disk in a Set of Disks

Rectangle Covering with Disks

Square Covering with Squares Õ(n1/2) ‡ [15]

Convex Layer Size in R2

From Exact Triangle:
n1/4−o(1) †

n1/3−o(1) ‡

From OMv:
n1/2−o(1) †,‡

Counting Maximal Points in R3 Õ(n2/3) ‡ [4]

O(nα)-approx. Weighted Square Set Cover

Klee’s Measure Problem with Squares Õ(n1/2) ‡ [15]

Discrete KMP with Squares O(n1/2) †,‡ [16]

From Exact Triangle:
n1/3−o(1) †,‡

From OMv:
n1/2−o(1) †,‡

Depth Problem with Squares Õ(n1/2) ‡ [15]

From OMv:
n1/3−o(1) †,‡O(1)-approximate Square Set Cover O∗(n1/2) ‡ [5]

Hypervolume Indicator in R3 Õ(n2/3) ‡ [4] Ω(
√

n) #

† per-operation runtime in the incremental setting.
‡ amortized runtime in the fully-dynamic setting.
$ assuming n1+o(1) expected preprocessing time.
# unconditional lower bound in the incremental setting on amortized time, assuming at
most polynomial time preprocessing, or on worst-case time without preprocessing assumptions.

Table 1 Non-trivial known upper bounds and new (at the time of the first version of this paper
being made public) lower bounds on the maximum over update and query time derived from the
Exact Triangle conjecture, the OMv conjecture or (in the case of the Hypervolume Indicator problem)
unconditionally. The Õ notation hides polylog factors, while the O∗ notation hides factors which
are o(nε) for an arbitrarily small constant ε > 0. All upper bounds are for data structures with at
most O∗(n) preprocessing. Note that the lower bounds for Square Range Marking also hold in the
case of a static set of points (with some assumptions on preprocessing time) and that the lower
bound for the Depth Problem derived from the OMv conjecture also holds for amortized runtime
in the incremental setting. The lower bound obtained for counting maximal points has since been
superseded by the more general result of Jin and Xu [10] who obtain lower bounds also in higher
dimension.
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maximum of both are summarized in Table 1, together with known upper bounds. Note
that the bounds we get for squares or square ranges imply the same bounds for rectangles or
general orthogonal ranges, although we sometimes get better trade-offs in these cases.

Some of the lower bounds reveal interesting separations between geometric dynamic
problems whose operations can be supported in subpolynomial or O(nε) time and similar
problems which require polynomial time with a fixed exponent (under the hardness conjectures
we consider).

Orthogonal range queries with dynamic updates on single points can be done with polylog
time operations, while dynamic updates on orthogonal ranges of points require polynomial
time.
Dynamically maintaining maximal points in a point set can be done in polylog time in
R2, while maintaining only their number in R3 already requires polynomial time.
The same separation between dimensions 2 and 3 applies for maintaining (the number of)
extremal points.
Related to the previous point, the ability to query for the size of any convex layer on a
dynamic set of points in R2 requires polynomial time (compared to polylog time when
we are only interested in the first convex layer, i.e. the convex hull).
Maintaining a O(1)-approximation for the size of dynamic unit square set cover can
be done in 2O(

√
logn) amortized time per update [5], while maintaining the size of a

O(nα)-approximation (for a constant 0 ≤ α < 1) requires polynomial time for arbitrarily
sized squares (with an exponent dependent on α).
In the weighted case of the previous problem, we also get such a separation: O(1)-
approximate weighted unit square set cover can be done in O(nε) time [5] while O(nα)-
approximate weighted dynamic square set cover requires polynomial time, with an
exponent independent of α.
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