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Abstract—There has been a long-standing interest in computing
diverse solutions to optimization problems. In 1995 J. Krarup [28]
posed the problem of finding k-edge disjoint Hamiltonian Circuits
of minimum total weight, called the peripatetic salesman problem
(PSP). Since then researchers have investigated the complexity of
finding diverse solutions to spanning trees, paths, vertex covers,
matchings, and more. Unlike the PSP that has a constraint on
the total weight of the solutions, recent work has involved finding
diverse solutions that are all optimal.

However, sometimes the space of exact solutions may be too
small to achieve sufficient diversity. Motivated by this, we initiate
the study of obtaining sufficiently-diverse, yet approximately-
optimal solutions to optimization problems. Formally, given an
integer k, an approximation factor c, and an instance I of an
optimization problem, we aim to obtain a set of k solutions to I
that a) are all c approximately-optimal for I and b) maximize
the diversity of the k solutions. Finding such solutions, therefore,
requires a better understanding of the global landscape of the
optimization function.

Given a metric on the space of solutions, and the diversity
measure as the sum of pairwise distances between solutions,
we first provide a general reduction to an associated budget-
constrained optimization (BCO) problem, where one objective
function is to optimized subject to a bound on the second objective
function. We then prove that bi-approximations to the BCO can
be used to give bi-approximations to the diverse approximately
optimal solutions problem.

As applications of our result, we present polynomial time
approximation algorithms for several problems such as diverse
c-approximate maximum matchings, s− t shortest paths, global
min-cut, and minimum weight bases of a matroid. The last result
gives us diverse c-approximate minimum spanning trees, advancing
a step towards achieving diverse c-approximate TSP tours.

We also explore the connection to the field of multiobjective
optimization and show that the class of problems to which our
result applies includes those for which the associated DUAL-
RESTRICT problem defined by Papadimitriou and Yannakakis
[35], and recently explored by Herzel et al. [26] can be solved in
polynomial time.

INTRODUCTION

Techniques for optimization problems focus on obtaining op-
timal solutions to an objective function and have widespread ap-
plications ranging from machine learning, operations research,
computational biology, networks, to geophysics, economics,
and finance. However, in many scenarios, the optimal solution is
not only computationally difficult to obtain, but can also render
the system built upon its utilization vulnerable to adversarial

attacks. Consider a patrolling agent tasked with monitoring n
sites in the plane. The most efficient solution (i.e., maximizing
the frequency of visiting each of the n sites) would naturally
be to patrol along the tour of shortest length1 (the solution to
TSP - the Traveling Salesman Problem). However, an adversary
who wants to avoid the patroller can also compute the shortest
TSP tour and can design its actions strategically [39]. Similarly,
applications utilizing the minimum spanning tree (MST) on a
communication network may be affected if an adversary gains
knowledge of the network [13]; systems using solutions to a
linear program (LP) would be vulnerable if an adversary gains
knowledge of the program’s function and constraints.

One way to address the vulnerability is to use a set of
approximately optimal solutions and randomize among them.
However, this may not help much to mitigate the problem, if
these approximate solutions are combinatorially too “similar”
to the optimal solution. For example, all points in a sufficiently
small neighborhood of the optimal solution on the LP polytope
will be approximately optimal, but these solutions are not too
much different and the adversaries can still effectively carry
out their attacks. Similarly one may use another tree instead
of the MST, but if the new tree shares many edges with the
MST the same vulnerability persists. Thus k-best enumeration
algorithms ([18], [24], [30], [31], [33]) developed for a variety
of problems fall short in this regard.

One of the oldest known formulations is the Peripatetic
Salesman problem (PSP) by Krarup [28], which asks for k-
edge disjoint Hamiltonian circuits of minimum total weight
in a network. Since then, several researchers have tried to
compute diverse solutions for several optimization problems
[4], [5], [16], [23]. Most of these works are on graph problems,
and diversity usually corresponds to the size of the symmetric
difference of the edge sets in the solutions. Crucially, almost
all of the aforementioned work demands either every solution
individually be optimal, or the set of solutions in totality (as
in the case of the PSP) be optimal. Nevertheless, the space
of optimal solutions may be too small to achieve sufficient
diversity, and it may just be singular (unique solution). In
addition, for NP-complete problems finding just one optimal

1We assume without loss of generality that the optimal TSP is combinatori-
ally unique by a slight perturbation of the distances.
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solution is already difficult. While there is some research that
takes the route of developing FPT algorithms for this setting
[5], [17], to us it seems practical to also consider the relaxation
to approximately-optimal solutions.

This motivates the problem of finding a set of diverse
and approximately optimal solutions, which is the problem
considered in this article. The number of solutions k and the
desired approximation factor c > 1 is provided by the user
as input. Working in the larger class gives one more hope of
finding diverse solutions, yet every solution has a guarantee
on its quality.

A. Our Contributions

We develop approximation algorithms for finding k solutions
to the given optimization problem: for every solution, the
quality is bounded by a user-given approximation ratio c > 1
to the optimal solution and the diversity of these k solutions
is maximized. Given a metric on the space of solutions to
the problem, we consider the diversity measure given by the
sum (or average) of pairwise distances between the k solutions.
Combining ideas from the well-studied problem on dispersion
(which we describe next), we reduce the above problem to a
budget constrained optimization (BCO) program.

B. Dispersion

Generally speaking, if the optimization problem itself is
NP-hard, finding diverse solutions for that problem is also
NP-hard. On the other hand, interestingly, even if the original
problem is not NP-hard, finding diverse and approximately
optimal solutions can still be NP-hard. This is due to the
connection of the diversity maximization objective with the
general family of problems that consider selecting k elements
from the given input set with maximum “dispersion”, defined
as max-min distance, max-average distance, and so on.

The dispersion problem has a long history, with many
variants both in the metric setting and the geometric setting [15],
[29], [38]. For example, finding a subset of size k from an
input set of n points in a metric space that maximizes the
distance between closest pairs or the sum of distances of the k
selected points are both NP-hard [1], [37]. For the max-sum
dispersion problem, the best known approximation factor is 2
for general metrics [7], [25], although PTAS are available for
Euclidean metrics or more generally, metrics of negative type,
even with matroid constraints [10], [11].
Dispersion in exponentially-sized space We make use of the
general framework of the 2-approximation algorithm [8], [37] to
the max-sum k-dispersion problem, a greedy algorithm where
the i+1th solution is chosen to be the most distant/diverse one
from the first i solutions. Notice that in our setting, there is an
important additional challenge to understand the space within
which the approximate solutions stay. In all of the problems
we study, the total number of solutions can be exponential
in the input size. Thus we need to have a non-trivial way of
navigating within this large space and carry furthest insertion
without considering all points in the space. This is where our
reduction to budget constrained problem comes in.

Self avoiding dispersion Furthermore, even after implicitly
defining the i+ 1th furthest point insertion via some optimiza-
tion problem, one needs to take care that the (farthest, in terms
of sum of distances) solution does not turn out to equal one of
the previously found i solutions, as this is a requirement for
the furthest point insertion algorithm. This is an issue one faces
because of the implicit nature of the furthest point procedure
in the exponential-sized space of solutions: in the metric k-
dispersion problem, it was easy to guarantee distinctness as
one only considered the n− i points not yet selected.

C. Reduction to Budget Constrained Optimization

Combining with dispersion, we reduce the diversity compu-
tational problem to a budget constrained optimization (BCO)
problem where the budget is an upper (resp. lower) bound if
the quality of solution is described by a minimization (resp.
maximization) problem. Intuitively the budget guarantees the
quality of the solution, and the objective function maximizes
diversity. Recall that the number of solutions k and the
approximation factor c is input by the user; a larger c allows
for more diversity.

We show how using an (a, b) bi-approximation algorithm
for the BCO problem provides a set of O(a)-diverse, bc
approximately-optimal solutions to the diversity computational
problem (the hidden constant is at most 4). This main reduction
is described in our full version paper [19].

The main challenge in transferring the bi-approximation
results because of a technicality that we describe next. Let
S(c) be the space of c approximate solutions. A (∗, b) bi-
approximation algorithm to the BCO relaxes the budget
constraint by a factor b, and hence only promises to return a
faraway point in the larger space S(b·c). Thus bi-approximation
of BCO do not simply give a farthest point insertion in the
space of solutions, and instead return a point in a larger space.
Nevertheless, we prove that in most cases, one loses a factor
of at most 4 in the approximation factor for the diversity.

Once the reduction to BCOs is complete, for diverse
approximate matchings, spanning trees and shortest paths we
exploit the special characteristics of the corresponding BCO
to solve it optimally (a = b = 1). For other problems such as
global min-cut, diverse approximate minimum weight spanning
trees, and the more general minimum weight bases of a matroid,
we utilize known bi-approximations to the BCO to obtain bi-
approximations for the diversity problem. For all problems
except diverse (unweighted) spanning trees2, our algorithms are
the first polynomial time bi-approximations for these problems.

We also connect to the wide literature on multicriteria
optimization and show that our result applies to the entire
class of problems for which the associated DUALRESTRICT
problem (defined by Papadimitriou and Yannakakis [35], and
recently studied by Herzel et al. [26]) has a polynomial time
solution. We discuss this in more detail after presenting our
reduction.

2While an exact algorithm for diverse unweighted spanning trees is known
[23], we give a faster (by a factor Ω(n1.5k1.5/α(n,m)) where α(·) denotes
the inverse of the Ackermann function), 2-approximation here.



This work has been accepted in LATIN 2022. Due to space
constraints, all proofs can be found in the publicly available
full version of this paper at [19].
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