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1 Abstract

We give an algorithm that uniformly samples and computes a
discrete volume measure of a space of configurations of rigid
bodies satisfying a system of distance inequality constraints
belonging to a large natural class that occurs in several ap-
plication scenarios. The algorithm views the configuration
space as a branched covering and uses a recent theory of
Cayley or distance coordinates to convexify the base space.
By employing an on-demand grid traversal datastructure, the
algorithm runs in linear time and empirically sublinear space
in the number of grid cubes that are used to define the dis-
crete volume measure and that intersect the configuration
space. A software implementation and comparison with ex-
isting methods is provided.

2 Introduction

A common type of configuration space is a feasible region of
a distance constraint system between rigid bodies, i.e., con-
sisting of configurations of a finite collection of rigid bodies
in Rd that satisfy a distance constraint system (equalities or
inequalities) between points in different rigid bodies. A rigid
body is an equivalence class of point sets modulo a group of
isometries, which, in the case of Euclidean distance constraint
systems, typically consists of rotations and translations. Ex-
amples of such configuration spaces occur in the study of
kinematic mechanisms, (underconstrained) mechanical CAD
designs, molecular or particle assemblies, metamaterials, etc.

2.1 Preliminaries and Background

A typical distance constraint system is specified by a finite
set S of rigid bodies together with a constraint graph G each
of whose vertices v is a point on the rigid body S(v) and
whose edges represent distance (interval) constraints. The
variables are the Cartesian orientations TX for X ∈ S, given
by

(
d+1

2

)
scalars specifying X’s rotation and translation rel-

ative to some fixed O ∈ S, where TO is assumed to be the
identity. The entire constraint system (C) is specified as
follows.

• (C1) For every pair (A,B) in S and every pair of points
a ∈ A and b ∈ B, ||TA(a)− TB(b)|| ≥ l(a, b),

• (C2) For every edge (a, b) ∈ G, l(a, b) ≤ ||TS(a)(a) −
TS(b)(b)|| ≤ h(a, b)

Here h and l are given positive scalar functions. For the
problems considered in this paper, we will assume – essen-
tially without loss of generality – that (i) the limiting case
where the interval size h(a, b)−l(a, b) tends to 0 as this case is

both more difficult and more interesting; and (ii) that G is in-
dependent and flexible in the sense of combinatorial rigidity
[1] [2]. Furthermore, while this paper deals only with Eu-
clidean distance constraints, the concepts generalize to non-
Euclidean norm or even other metric distance constraints.

Typically, such Cartesian configuration spaces are topolog-
ically complex semi-algebraic subsets of a high dimensional
ambient space (k rigid bodies give m = (k−1)

(
d+1

2

)
ambient

dimensions). Generically, when the constraints as in (C2)
above satisfy l = h, the configuration space is a real alge-
braic (quadratic) variety of co-dimension |E(G)|. However,
in the abovementioned applications, typically, the distance
constraints are either unidirectional inequalities, or, if they
are bidirectional then the specified intervals of allowable dis-
tances are typically “small” as indicated in the assumption
above.

A common example is a discretized version of a so-called
Lennard-Jones potential constraint between 2 atoms in as-
sembling rigid molecules [3]. Such potentials encode a vari-
ety of types of weak interactions, including Van der Waals,
hydrogen bonds, as well as electrostatic, hydrophobic, hy-
drophilic as well as quantum-level interactions.

Each such interval constraint effectively reduces the di-
mension of the configuration space by one so that we are
dealing with a configuration space that is effectively of much
smaller dimension than the ambient dimension. For example
m− 1 (resp. m− 2) such “small” interval constraints would
generically yield a configuration space that is a “thick” curve
(resp. sheet) in the ambient m dimensional space, with the
thickness tending to 0 in the limiting case. See examples in
Figure 1a.

Whether dealing with distance equality or inequality con-
straints, the task of traversing or sampling configurations
while staying within the effectively lower dimensional and
topologically complex Cartesian configuration space is typi-
cally achieved using an onerous type of “gradient descent”,
i.e. repeated linear tangential steps (e.g. by computing the
Jacobian of the distance map of the constraint system), al-
ternating with projections / corrections back to the feasible
region. When prevailing methods are used, including molec-
ular dynamics or Monte Carlo based methods, this gradient
descent process pervades many common tasks such as find-
ing optimal or extremal configurations, finding paths, path
lengths, region volumes (configurational entropy), path prob-
abilities for transition networks, sampling configurations or
paths etc.

2.2 Previous Work

The papers [4] [5], [6], [7], [8] [9] [10] solved the problem of
traversing or sampling – while staying within – a distance
constrained, Cartesian configuration space, by treating it as
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(a) Top: Two dimensional Cartesian configuration space R of a dis-
tance constraint system in dimension 3, nonuniformly sampled;
colors represent different flips of R viewed as a branched cov-
ering space. Middle: some sampled feasible configurations of
rigid bodies satisfying distance constraints of the type (C1) and
(C2), one from each flip Bottom: corresponding convex base
space with uniform sampling in Cayley coordinates

(b) Bottom: Uniform Cartesian sampling, colors represent differ-
ent flips of another two dimensional configuration space R (also
of a distance constraint system in dimension 3 not shown) as
a branched covering space. Top: Corresponding (nonuniform)
sampling of the convex base space in Cayley coordinates, note
that some Cayley configurations have multiple colors - each such
configuration has preimages belong to multiple flips

a branched covering space . More precisely, a configuration
space in m ambient dimensions, defined as in (C2) above by
a constraint graph G of |E(G)| generically independent dis-
tance (interval) constraints, is mapped by a covering map to
a base space that is a subset of the space spanned by m−|E|
Cayley coordinates. A Cayley coordinate is an unconstrained
pairwise squared distance associated with a nonedge in the
distance constraint graph. A Cayley configuration is a tuple
of m−|E| Cayley coordinate values; the base space consists of
Cayley configurations. By definition of a covering map, the
pre-image of a Cayley configuration is finite, i.e. has gener-
ically at most finitely many feasible configurations mapped
to it by the covering map. Accordingly, the pre-image of
the base space is the union of finitely many almost disjoint
“sheets” or flips, which are branches of the covering space.
The flips or branches may intersect on a set of dimension
strictly smaller than m− |E|. See Figure 1a.

For dimension d ≤ 3 and a substantial nice class Cd of dis-
tance (interval) constraint graphs G, [4][10][5] used the prop-
erties of the cone of Euclidean squared pairwise distances of a
point set [11] (generalizable to other norms [12]) to show the
following properties: (1) there is a covering map πG given by
chosen Cayley coordinates or non-edges of G, guaranteeing
a convex base space (consisting of feasible Cayley configura-
tions with nonempty pre-images of the covering map); (2) for
a Cayley configuration in the base space, computing the pre-
image configurations of the covering map has linear output
complexity; and (3) determining whether a Cayley configu-
ration is feasible has linear time complexity in the problem
size i.e. the number of points specifying the rigid bodies. We
note that the original paper [4] states these properties for a
larger graph whose edges - interpreted in the context of this
paper - include the distance constraints between point pairs
within each rigid body. However the the graph G in papers
[10][5] refers only to the distance (interval) constraints (C2)
between rigid bodies.

Using these properties, we can efficiently traverse the effec-
tively lower dimensional and topologically complex feasible
configuration space R as follows. Traversing the base space
of R is efficient by (1) and (3) above, and moreover a subset
of the Cayley coordinate space, by definition; computing the
pre-image configurations of the covering map is efficient by

(2) above. This yields a traversal that does not leave the
branched covering space R. Furthermore, the boundaries of
the base space of R are explicitly detected and traversed.
The boundaries represent two types of transitions: (i) the
inequalities in (C1) and (C2) above become tight, or (ii) the
real pre-image of the covering map becomes empty (the pre-
image is complex); these are additionally the intersections of
the branches or flips of the covering space.

The Cayley configuration methodology requires character-
izing distance constraint graphs with convex base spaces of
Cayley configurations. It draws upon a rich set of tools from
graph rigidity, realization and distance geometry [2][1], gen-
eralizes to other norms [13] is closely related to a key fi-
nite forbidden minor property called flattenability of graphs
[13][14][15], and leads to directions of independent interest to
those areas. Furthermore, the methodology has been imple-
mented as opensource software (EASAL [10][5] and CayMos
[7] [6]) for respectively molecular and particle assembly mod-
eling and kinematic mechanism analysis and design) and has
led to several improvements in those areas, besides efficient
algorithms for the core problem of distance constraint graph
realization [16].

2.3 The Problems, the Obstacles and Current
Approaches

While the Cayley coordinate representation significantly im-
proves the efficiency of traversal, path finding, search for
extremal configurations, etc. [10][5][17][18][7][6][8][9], for a
configuration space specified by distance constraint graphs
in the abovementioned class Cd of [4], it is not clear how
to use it to sample the configuration space uniformly in the
original Cartesian coordinates of the ambient space, or to
compute volume measures (or path lengths), a frequent and
important task for configurational entropy and free energy
computations [19][20][21]. Such volume definitions are based
on a Cartesian coordinate grid.

Problem 1 is to compute the ε-approximate volume of a
(feasible) configuration space R in ambient m-dimensional
Cartesian coordinate space, defined as the relative propor-
tion of m-dimensional hypercubes of side length ε that in-
tersect R ( in a generic rectilinear grid subdivision of the
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ambient space). Problem 2 is to generate one point on R
per intersecting hypercube, i.e. a uniform Cartesian sam-
pling of configurations in R. Both problems assume distance
constraint graphs in the nice class Cd.

Clearly Problem 1 reduces to Problem 2 but it is con-
ceivable that it could be solved directly. As we explain the
approaches to Problem 2 below, we note the reasons why, in
current practice, Problem 1 is solved essentially by solving
Problem 2.

One obvious way (*) to try to solve both problems is to
use the known efficient method [10] [5][7][6] for uniform sam-
pling in Cayley coordinates of R’s convex base space together
with preimage computations as described above, since R’s
distance constraint graph is in the nice class Cd. However,
with no adjustments, this results in a highly nonuniform sam-
pling of R, i.e. an unsatisfactory solution to Problem 2, see
Figure 1b.

In fact, this is a decades-old problem in computational
chemistry, referred to as “internal coordinate to Cartesian
back transformation”, that continues to be actively studied
[22][23][24]. To clarify, the “internal coordinates” used in
computational chemistry, e.g. in molecular dynamics, are
different from Cayley coordinates, and to the best of our
knowledge lack the underlying theory and tools available for
Cayley coordinates.

The straightforward workaround is to traverse the base
space of R in Cayley coordinates, but iteratively adjust the
size of each Cayley step by computing a pseudoinverse of the
linearization (Jacobian) of the covering map and ensuring
uniform Cartesian sampling of the pre-image branched cov-
ering space R. This approach suffers from both inaccuracies
due to linearization error as well as illconditioning problems
[25]. A standard way to address these problems is to use the
Hessian and higher derivatives of the covering map. However,
such efforts are still underway[22][23][24]and the problem is
by no means settled.

It should be noted that the use of higher derivatives of
the covering map theoretically provides another approach to
Problem 1 directly without Problem 2. I.e., one could avoid
uniform Cartesian sampling of the configuration space R, but
rather use the convexity advantage of the base space to com-
pute its Cayley volume in polynomial time [26][27][28][29][30]
using a random walk, while using the higher derivatives of the
covering map to compute the volume of R and solve Problem
1. In any case, this too involves some form of randomized or
deterministic adaptive sampling in Cayley coordinates. Fur-
thermore, to our knowledge such an approach to Problem 1
that avoids Problem 2 does not exist in the literature. One
reason could be that although the covering map is quite well
behaved, this cannot be said about the pseudoinverses of its
Jacobian or Hessian.

Our contributions provide an optimal solution to Problem
2 and thereby a solution to Problem 1.

3 Contributions

(1) The first contribution is an algorithm Uniform Cartesian
that solves Problem 2 when the graph G is in the above-
mentioned class Cd for d ≤ 3 (as characterized in [4][5]) in
time linear in the output size, i.e. in the number of ε-cubes
that intersect R. This is optimal (and nontrivial) since R is
a topologically complex, effectively lower dimensional subset
of the ambient space. In addition to leveraging the known ef-
ficient method (*) for sampling the base space of R in Cayley
coordinates [10][5], our algorithm is inspired by a slicing al-
gorithm for 3D printing very large objects filled with mapped
(curved) microstructures [31].

(2) The second contribution is of independent interest: an
on-demand grid traversal method that empirically (and in-
tuitively) takes sublinear space in the number of grid cubes
visited. This indicates sublinear space complexity (in terms
of output size) for a modified Problems 1 and 2 that requires
at least (instead of exactly) one point per grid hypercube
that intersects R.

(3) The third contribution is an opensource software im-
plementation of the above algorithm that is used to compare
the performance of our method for Problem 1 using vari-
ants of the obvious method (*) described above, i.e., Cayley
sampling according to 3 different distributions together with
pre-image computations of the covering map. The implemen-
tation relies on efficient grid datastructures that could be of
independent interest: they speed up the extraction of arbi-
trary dimensional facets and simplices and their intersection
with the configuration space R.

3.1 Sketch of the Algorithm and Main Result

Input: a set of rigid bodies S, and constraints as in (C) with
the constraint graph G in the class Cd, d ≤ 3 together with
bounds l and h. These define the configuration space R. The
required accuracy ε for Problems 1 and 2. For reasons of ex-
position and the current software implementation, we further
assume d = 3 and |S| = 2 whereby the ambient dimension
m = 6. Smaller d are subsumed and standard algorithmic
extensions to |S| > 2 follow the description in [5]. We fur-
ther assume the modified Problems 1 and 2 that require at
least (instead of exactly) one point per grid hypercube that
intersects R. A straightforward output datastructure with a
hash map solves the original problems efficiently.

The algorithm has 4 parts.

1. using the covering map πG given in [4], to sample
the base space πG(R) in Cayley coordinates using the
method in [5] that determines a Cayley step-size based
on ε and finds boundaries and extremal configurations;
further compute the corresponding pre-image Carte-
sian configurations s in R.

2. Using the Cartesian ε-grid hypercube containing s as a
starting point, generate hypercubes p on-demand, and
traverse using a key frontier hypercube datastructure.

3. Use the covering map πG to generate the vertices of the
Cayley cuboid πG(p), followed by its linearization and
intersection of its facets (decomposed into disjoint sim-
plices) of dimension |E(G)| with the convex base space
πG(R2), of dimension m − |E(G)|; here R2 is the set
of configurations satisfying the constraints (C2) and
R ⊆ R2; this generates partly feasible Cayley configu-
rations c.

4. Compute the pre-image configurations π−1
G (c), retain

only if fully feasible, i.e. only if (C1) is satisfied, and
find and count the corresponding Cartesian grid cube
p′. Note that due to linearization error, p may may dif-
fer from p′. This solves the modified Problems 1 and
2. A straightforward output datastructure stores the
cubes p′ and locates them with a hash map to avoid
doublecounting. This solves the original unmodified
problems.

3.1.1 The Frontier Hypercube Graph Datastructure of
Step 2

We describe the key Step 2 above: this is achieved by a
frontier m-dimensional hypercube graph datastructure that
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maintains a graph whose vertices represent those inspected-
but-unprocessed hypercubes and whose neighbors are some
of their (m− 1)-dimensional face neighbors as described be-
low. The graph’s hypercubes/vertices are partitioned into
two sets: P for promising inspected hypercubes yet to be
processed (i.e. intersections and pre-images yet to be com-
puted as in Steps 3 and 4), and Q for similarly inspected and
unprocessed candidate frontier hypercubes that are not yet
promising. Processed hypercubes are not stored, but all of
their face-neighbor hypercubes are guaranteed to be in P or
Q or already processed. An unprocessed hypercube is in P if
its shared face with one of its processed neighbors contains a
|E(G)| ≤ m dimensional facet with a valid intersection and
pre-image in R. An unprocessed hypercube is in Q if at least
one of its face neighbors has been processed, but it is not in
P .

Each face of a hypercube in P and Q is given one of 3
labels. Those it shares with processed cubes, those it shares
with uninspected cubes (neither of these are edges in the
frontier hypercube graph datastructure), and those it shares
with unprocessed cubes, which are edges of the frontier graph
datastructure.

Note that P and Q could contain disconnected compo-
nents and even singleton hypercube/vertices (all of whose
face neighbors have either been processed or have not been in-
spected). Furthermore, faces corresponding to edges between
two hypercubes in P could already contain E(G)-dimensional
facets that have yielded points in R: this is because such
facets could additionally belong to faces shared with already
processed cubes. However, faces corresponding to edges in-
cident on any hypercube in Q cannot contain such a facet.

The main operations of Step 2 are the following. A hyper-
cube c with the maximum number of processed face neighbors
is selected from P . As mentioned above, it is possible that
at the time c is chosen from P to be processed, in fact all of
c’s faces were shared with previously processed hypercubes,
in which case, there is nothing further to be done and c is
removed from the datastructure.

It is also possible that although some of c’s faces were
shared with unprocessed hypercubes in P or Q, or unin-
spected hypercubes, all of c’s E(G) dimensional facets could
have already been processed. I.e. there is no Step 3 or 4 to
be done at the time c is chosen to be processed. In any case,
faces corresponding to c’s uninspected or unprocessed face
neighbor hypercubes are processed one face at a time. Ef-
fectively any of c’s E(G)-dimensional facets not shared with
processed cubes are now processed. The faces correspond-
ing to c’s unprocessed neighbors in P or Q are processed
and the neighbors’ shared faces with c are appropriately re-
labeled. Some hypercubes could move from Q to P . Any
of c’s uninspected face neighbors that were previously not in
the frontier hypercube datastructure are now added to P or
Q appropriately labeling those shared faces. Then c and its
edges are removed from the frontier graph datastructure.

The algorithm ends when P is empty. The key property of
this datastructure is that a hypercube c can be removed as
soon as it is processed without compromising the traversal.

3.1.2 Main Result: Key Observations

The use of the frontier hypercube datastructure as described
above ensures that the algorithm inspects all the Cartesian
hypercubes neighboring those hypercubes that intersect R
and starts with an intersection point in R. If R in the above
sentence were replaced by R2, i.e., without the (C1) con-
straints, the convexity of the base space π−1

G (R2) would en-
sure that the algorithm does not miss any Cartesian hyper-
cubes that intersect R2 and therefore R. Step 1 deals with

any discontinuity or other violation of convexity in π−1
G R

arising from the constraints (C1), by including as starting
points of the traversal at least one (boundary) hypercube in
every component of R (in a minimal decomposition of R into
convex regions).

Further, since only neighbors of R-intersecting hypercubes
are inspected, the number of inspected hypercubes that do
not intersect R is bounded by a constant (2d) factor of the
number of intersecting hypercubes.

The above observations ensure Contribution 1. As noted
in the previous section, a further optimization in the frontier
hypercube datastructure ensures that inspected hypercubes
- which are now in the “interior” of the traversal region - are
immediately - and safely - deleted from the frontier datas-
tructure, ensuring Contribution 2.

The next section describes Contribution 3.

3.2 Computational Experiments and Results

3.2.1 Setup

The software for the new algorithm UC (uniform Carte-
sian) was implemented atop an existing curated opensource
suite EASAL (Efficient Atlasing and Search of Assembly
Landscapes, and hence denoted EASAL-UC. software avail-
able at http://bitbucket.org/geoplexity/easal_dev; see
also video https://cise.ufl.edu/~sitharam/EASALvideo.

mpeg, and user guide https://bitbucket.org/geoplexity/

easal/src/master/CompleteUserGuide.pdf). Although
EASAL is suited to full-fledged parallel processing, the ex-
periments presented here are merely for proof-of-concept and
were run on a single core of an Intel Core(TM) i7-8700K
CPU@ 3.70 GHz CPU with a total estimated memory usage
of 100MB.

The experiments compare EASAL-UC with comparator
methods w.r.t. their performance on Problems 1 and 2 on
benchmark Cartesian configuration spaces R defined as fol-
lows. The set S consisted of |S| = k = 2 rigid bodies A
and B in d = 3 with 6 points each. Thus the ambient di-
mension m =

(
4
2

)
= 6. Our distance constraint systems (C)

are defined by first assigning every point p a “radius” rp.
The distance interval lower bound l(a, b) in (C1) and (C2) is
specified to be 0.75(ra + rb), and the distance interval upper
bound h(a, b) in (C2) is (ra+rb). For the constraints in (C2),
two different graphs G (both independent, containing 4 edges
each belonging to the “nice” class C3 of [4][5]) were chosen.
These give two different constraint systems (C) and corre-
spondingly two different 2-dimensional feasible configuration
spaces R (referred to as “configuration space 1” and “configu-
ration space 2”), with appropriate covering maps and convex
base spaces.

The branched covering space of Configuration space 1 has 7
available flips indexed 0 through 6, while configuration space
2 has 4 flips indexed 2, 3, 4, and 5. Choosing configura-
tion space 1, flip 0 as control group, the Cartesian volume of
all flips are calculated using EASAL-UC. The comparators
are the known efficient methods EASAL-1/2/3 that perform
the straightforward approach (*) described in Section 2.3.
The ε for Problem 1 and 2 also determines the EASAL-UC
Cartesian hypercubes, i.e. translational and rotational step
sizes are set to 0.5 and π/8, respectively. EASAL-1 per-
forms uniform sampling in Cayley coordinates, and its Cay-
ley step size is set to 0.8. This ensured that EASAL-UC (194)
and EASAL-1(191) generate similar number of samples for
the control flip. For the sampling distributions chosen by
EASAL-2 and EASAL-3, initial step size is set to 2 and 4
respectively. In addition a higher resolution (0.2 and π/16)
ultra-fine grid is used as baseline/ground truth to compare
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the other methods.

3.2.2 Key Measurements

We describe the key measurements used to compare EASAL-
UC with the EASAL variants 1/2/3 for their performance on
Problem 1 and 2.

Problem 1: Volume Computation Accuracy and Efficiency
EASAL-UC computes volume of each flip by counting Carte-
sian hypercubes with at least one feasible configuration in
them. EASAL 1/2/3 simply follow the efficient method
(*) of Section 2.3, sample the base space in Cayley coor-
dinates according to different distributions and compute the
pre-image Cartesian configurations and count them to give
a rough Cartesian volume approximation. The volume ra-
tio against the control flip is calculated and compared. As
a measurement of efficiency, time cost per feasible cube(in
UC)/point(in EASAL) is calculated. The results are given
in Tables 1 and 2 in the Appendix. Clearly, EASAL-UC
vastly outperforms EASAL 1/2/3 however at at a signifi-
cant expense w.r.t. practical efficiency although the formal
complexity analysis indicates no difference, i.e. linear time
complexity in the output size.

Problem 2: Uniform Coverage Accuracy and Efficiency Ac-
curacy of coverage of a method M of a fine Cartesian grid is
measured using the γ-coverage. An γ-cube is a cube with a
baseline grid point as centre and 2γ as range in all 6 Carte-
sian dimensions.

To normalize methods with different number of samples,
γ-coverage is defined as the percentage of baseline grid points
covered by at least one sample point, i.e.that lies within a γ-
cube of a sample point of Method M . Further, the value of
γ is set to

γ := d (Γ/σ)1/6

2
e

where Γ is grid point count and σ is sample point count for
Method M . Clearly, a more accurate solution to Problem 2
will have higher γ-coverage and EASAL-UC outperforms the
comparators despite the fact that it is disadvantaged by the
ceiling in the computation of γ because of which the γ-cubes
were the same for all of the methods although EASAL 2/3
had many more samples as shown in Table 3 in the Appendix.

The efficiency of coverage is shown in the Appendix Fig-
ure 2 with the number of sample points µ that lie in an γ-cube
against number of γ-cubes with µ sampled points in them.
A more efficient method should have fewer points mapped to
the same γ-cube. As is seen in the plot, all 4 methods have
relatively good coverage efficiency.

References

[1] Jack E Graver, Brigitte Servatius, and Herman Ser-
vatius. Combinatorial rigidity. 2. American Mathemat-
ical Soc., 1993.

[2] Meera Sitharam, Audrey St John, and Jessica Sidman.
Handbook of geometric constraint systems principles.
Chapman and Hall/CRC, 2018.

[3] Sangjae Seo and Wataru Shinoda. “Molecular Dynam-
ics Simulations”. In: Reference Module in Chemistry,
Molecular Sciences and Chemical Engineering. Else-
vier, 2018. isbn: 978-0-12-409547-2. doi: 10 . 1016 /

B978-0-12-409547-2.14274-X.

[4] Meera Sitharam and Heping Gao. “Characterizing
graphs with convex and connected cayley configuration
spaces”. In: Discrete and Computational Geometry 43
(3 2010), pp. 594–625. issn: 01795376. doi: 10.1007/
s00454-009-9160-8.

[5] Rahul Prabhu et al. “Atlasing of Assembly Landscapes
using Distance Geometry and Graph Rigidity”. In:
Journal of Chemical Information and Modeling 60 (10
Oct. 2020), pp. 4924–4957. issn: 1549-9596. doi: 10.
1021/acs.jcim.0c00763.

[6] Meera Sitharam and Menghan Wang. “How the Beast
really moves: Cayley analysis of mechanism realization
spaces using CayMos”. In: Computer-Aided Design 46
(2014). 2013 SIAM Conference on Geometric and Phys-
ical Modeling, pp. 205–210. issn: 0010-4485. doi: doi.
org/10.1016/j.cad.2013.08.033.

[7] Menghan Wang and Meera Sitharam. “Algorithm 951:
Cayley Analysis of Mechanism Configuration Spaces
using CayMos: Software Functionalities and Architec-
ture”. In: ACM Trans. Math. Softw. 41.4 (2015), 27:1–
27:8. doi: 10.1145/2699462.

[8] Meera Sitharam, Menghan Wang, and Heping Gao.
“Cayley configuration spaces of 2D mechanisms, Part
I: extreme points, continuous motion paths and min-
imal representations”. In: (Dec. 2011). url: http://
arxiv.org/abs/1112.6008.

[9] Meera Sitharam, Menghan Wang, and Heping
Gao. “Cayley Configuration Spaces of 1-dof Tree-
decomposable Linkages, Part II: Combinatorial Char-
acterization of Complexity”. In: (Dec. 2011). url:
http://arxiv.org/abs/1112.6009.

[10] Aysegul Ozkan et al. “Algorithm 990: Efficient atlas-
ing and search of configuration spaces of point-sets
constrained by distance intervals”. In: ACM Transac-
tions on Mathematical Software 44 (4 June 2018). issn:
15577295. doi: 10.1145/3204472.

[11] I J Schoenberg. Metric Spaces and Positive Definite
Functions. 1938, pp. 522–536.

[12] Keith Ball. “Isometric embedding in lp-spaces”. In: Eu-
ropean Journal of Combinatorics 11.4 (1990), pp. 305–
311.

[13] Meera Sitharam and Joel Willoughby. “On Flattenabil-
ity of Graphs”. In: (Mar. 2015). url: http://arxiv.
org/abs/1503.01489.

[14] Maria Belk and Robert Connelly. “Realizability of
graphs”. In: Discrete and Computational Geometry 37
(2 2007), pp. 125–137. issn: 14320444. doi: 10.1007/
s00454-006-1284-5.

[15] Maria Belk. “Realizability of graphs in three dimen-
sions”. In: Discrete & Computational Geometry 37.2
(2007), pp. 139–162.

[16] Troy Baker et al. “Optimal Decomposition and Recom-
bination of Isostatic Geometric Constraint Systems for
Designing Layered Materials”. In: Computer Aided Ge-
ometric Design 40 (July 2015). doi: 10.1016/j.cagd.
2015.07.001.

[17] Aysegul Ozkan et al. “Baseline Comparisons of Com-
plementary Sampling Methods for Assembly Driven by
Short-Ranged Pair Potentials toward Fast and Flexible
Hybridization”. In: Journal of Chemical Theory and
Computation 17 (3 Mar. 2021), pp. 1967–1987. issn:
15499626. doi: 10.1021/acs.jctc.0c00945.

5

https://doi.org/10.1016/B978-0-12-409547-2.14274-X
https://doi.org/10.1016/B978-0-12-409547-2.14274-X
https://doi.org/10.1007/s00454-009-9160-8
https://doi.org/10.1007/s00454-009-9160-8
https://doi.org/10.1021/acs.jcim.0c00763
https://doi.org/10.1021/acs.jcim.0c00763
https://doi.org/doi.org/10.1016/j.cad.2013.08.033
https://doi.org/doi.org/10.1016/j.cad.2013.08.033
https://doi.org/10.1145/2699462
http://arxiv.org/abs/1112.6008
http://arxiv.org/abs/1112.6008
http://arxiv.org/abs/1112.6009
https://doi.org/10.1145/3204472
http://arxiv.org/abs/1503.01489
http://arxiv.org/abs/1503.01489
https://doi.org/10.1007/s00454-006-1284-5
https://doi.org/10.1007/s00454-006-1284-5
https://doi.org/10.1016/j.cagd.2015.07.001
https://doi.org/10.1016/j.cagd.2015.07.001
https://doi.org/10.1021/acs.jctc.0c00945


[18] Ruijin Wu et al. “Rapid prediction of crucial hotspot
interactions for icosahedral viral capsid self-assembly
by energy landscape atlasing validated by mutagen-
esis”. In: PLoS Computational Biology 16 (10 Oct.
2020). issn: 15537358. doi: 10.1371/journal.pcbi.
1008357.

[19] Simon Hikiri, Takashi Yoshidome, and Mitsunori
Ikeguchi. “Computational Methods for Configurational
Entropy Using Internal and Cartesian Coordinates”.
In: Journal of Chemical Theory and Computation 12
(12 2016), pp. 5990–6000. issn: 15499626. doi: 10 .

1021/acs.jctc.6b00563.
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Appendix

Table 1 shows result of relative volume calculation using aforementioned method. The best method should have relative
volume close to the baseline result. As we can see EASAL-UC is the only method presenting a reasonable accuracy for
Problem 1.

Table 1: Relative volume against configuration space 1, flip 0

Node name Flip num Baseline UC EASAL-1 EASAL-2 EASAL-3
configuration space 1 1 1.656 1.830 0.995 0.669 1.021
configuration space 1 2 0.772 0.747 0.545 0.215 1.541
configuration space 1 3 1.075 1.093 0.539 0.214 1.299
configuration space 1 4 0.931 1.036 0.749 0.278 1.480
configuration space 1 5 0.975 0.964 0.728 0.270 1.685
configuration space 1 6 1.240 1.438 0.843 0.645 0.922
configuration space 2 2 1.353 1.459 0.754 2.000 1.428
configuration space 2 3 1.681 1.768 0.749 1.977 1.489
configuration space 2 4 1.708 1.773 0.764 1.991 1.515
configuration space 2 5 1.417 1.500 0.696 2.050 1.339

Table 2 shows time spent on the sampling and calculation process. UC spends more than 1000x time per sample as a
trade-off to achieve a precise result for Problem 1.

Table 2: Time consumption per sample (ms)

Node name UC time per point UC time per cube EASAL-1 EASAL-2 EASAL-3
configuration space 1 158.348 887.476 0.568 0.529 0.507
configuration space 2 137.956 1451.229 1.037 0.303 0.341

Table 3 shows percentage of γ-cubes covered by different methods. With similar number of samples, fewer grid cubes are
covered in EASAL-1; while EASAL-2/3 used more samples but achieve lower coverage rate. This clearly shows EASAL-UC’s
sampling accuracy for Problem 2.

Table 3: Comparison of different methods on Uniform Coverage

Sampling method Sample count γ - value Coverage rate
UC 194 d0.659e 94.8%

EASAL-1 191 d0.661e 76.3%
EASAL-2 659 d0.537e 73.1%
EASAL-3 425 d0.578e 90.6%

Figure 2 plots the number of sample points µ that lie in an γ-cube against number of γ-cubes with µ sampled points in
them. A more efficient method should have fewer points mapped to the same γ-cube. As is seen in the plot, all 4 methods
have relatively good coverage efficiency.

(a) Uniform Cartesian (b) EASAL-1

(c) EASAL-2 (d) EASAL-3

Figure 2: Horizontal axis showing the number of sample points ν that lie in γ-cubes and vertical axis showing the number
of γ-cubes having ν mapped points inside of them.
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