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Abstract

We introduce algorithms which use numerical algebraic geometric methods to compute lower
bounds on the reach, local feature size, and the weak feature size of a real algebraic manifold
starting with only the manifold’s defining polynomial equations as input. In many cases our
algorithms compute these quantities directly rather than a lower bound. One motivation for
developing these algorithms is to combine them with methods which produce dense point sam-
ples of algebraic manifolds, then subsequently apply topological data analysis or computational
geometry methods to the point samples either to extract information or to test those methods’
performance. We consider computational results both from our feature size algorithms and
from a proof-of-concept experiment that combines them with persistent homology computa-
tions. This second example compares the performance of two persistent homology approaches:
the “standard” version with globally dense samples and an “adaptive” version with samples
which are adaptively dense with respect to the local feature size.1

1 Introduction

The reach [9], local feature size [1], and weak feature size [4, 10] of a compact space X ⊆ Rn are
geometric feature sizes that frequently arise in the context of topological data analysis (TDA) and
computational geometry. In many applications the space X is not fully specified, e.g., when the
input is a “dense” finite sample P ⊆ Rn which approximates X. It is only possible to estimate the
feature sizes of X using P in this case.

In contrast, consider the case where X is defined as the set of solutions {x ∈ Rn | f1(x) =
f2(x) = · · · = fc(x) = 0} to c polynomials f1, . . . , fc in n variables. The list of polynomials fully
specifies X. These algebraic spaces are of intrinsic interest to algebraic geometers, but also arise
in application domains like robotics and kinematics [11].

Recent years have witnessed growing interest in developing methods that combine numerical
algebraic geometry algorithms (NAG, see e.g. [12]), which can compute numerical solutions to
polynomial equations, with TDA and computational geometry approaches to analyze algebraic
spaces. There are now NAG-based algorithms which perform a crucial first step, namely producing
a provably dense point cloud sample P for an algebraic space X using the list of polynomials

1The full version of this paper has been submitted to a journal for peer review. A preprint is available at
https://arxiv.org/abs/2209.01654.
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defining X as input [7, 8], see Figure 1. Computing feature sizes of X is also necessary, however,
to determine just how dense a sample one needs for subsequent geometry-based analysis.

In the full version of this paper, we provide NAG-based algorithms for computing lower bounds
on the reach, local feature size, and weak feature size of an algebraic manifold using only its defining
polynomial equations as input and examples from computations with these algorithms. Much of
the contribution is theoretical algebraic geometry, but in this abstract and its associated talk we
will particularly focus on the connection to TDA and computational geometry.

For example, our feature size computations provide a previously unavailable baseline to inves-
tigate the performance of methods which estimate feature sizes. As a proof of concept, we consider
an “adaptive” subsampling method for persistent homology proposed by Dey et al. [6] that esti-
mates local feature sizes. Their approach has recently been expanded to a general framework for
adaptive subsampling by Cavanna and Sheehy [2, 3]. Using our algorithms, we find evidence that
the method of Dey et al. performs comparably to a baseline analog of Chazal and Lieutier [5] which
requires directly computed local feature sizes.

Figure 1: Dense sample from a quartic surface, the solutions to a polynomial equation of degree 4 in 3
variables, computed using its defining polynomial equation as input.

2 Feature sizes and numerical algebraic computations

We recall the definition of various feature sizes and consider a high-level overview of how to translate
the weak feature size into polynomial conditions in the algebraic setting. Following the terminology
of Chazal and Lieutier [4], let X ⊆ Rn be a non-empty and compact subspace. The distance-to-X
function dX : Rn → R is defined by dX(z) = minx∈X ∥x − z∥, where ∥ · ∥ is the standard norm.
For any z ∈ Rn, the set of closest points πX(z) is {x ∈ X | ∥x − z∥ = dX(z)}. The medial axis
of X, MX , is the closure of the set of points in Rn with at least two closest points on X, i.e.
MX = {z ∈ Rn | |πX(z)| > 1}.

Definition 1. The minimum distance from X to MX , i.e. minx∈X dMX
(x), is the reach [9] of X.

For a point z ∈ Rn, the distance dMX
(z) is the local feature size [1] of X at z. A point z ∈ MX

is a critical point of dX or geometric bottleneck of X if z ∈ conv(πX(z)). Let BX be the set of
geometric bottlenecks. The weak feature size [4, 10] of X is the minimum distance from X to BX .

Suppose that X ⊆ Rn is algebraic, i.e. X = {x ∈ Rn | f1(x) = f2(x) = · · · = fc(x) = 0} for
polynomial equations f1, . . . , fc. Let F = (f1, . . . , fc) : Rn → Rc. To give some flavor of the algebra
involved, we will consider computing the weak feature size. For the sake of clarity, we will suppress
some technical assumptions regarding the algebraic structure of X.2

To perform algebraic computations, we require polynomial conditions which characterize when
a point z ∈ Rn is a geometric bottleneck of X. If z is a geometric bottleneck, then z ∈ conv(πX(z)).

2More precisely: the corresponding complex algebraic set V (F ) = {x ∈ Cn | F (x) = 0} must be smooth and
equidimensional of dimension n− c.
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• There exists an affinely independent {x1, x2, . . . , xk} ⊆ πX(z) with F (xi) = 0 for all i, and
positive real numbers t1, t2, . . . , tk with z =

∑k
i=1 tixi. These are polynomial equalities with

variables t1, . . . , tk, the coordinates of z, and the coordinates of each xi.

• With x1, . . . , xk as before, ∥x1 − z∥2 = ∥xi − z∥2 for i = 2, . . . , k. These are polynomial
equalities in the same variables.

• Since d2X defined via the constrained optimization problem d2X(z) = minx∈X ∥x − z∥2 =
minF (x)=0 ∥x − z∥2, any point x ∈ πX(z) satisfies Lagrange multiplier conditions for the
optimization problem. If x1, . . . , xk are as above, every point xi fulfills these conditions. So
there are multipliers λ1, λ2, . . . , λc where xi − z =

∑c
i=1 λi∇fi(x).

In addition to the algorithms we discussed in the Introduction, we also show the following main
result in the full version (Theorem 4.15).

Theorem 2. Almost all algebraic manifolds in a large class3 without any defining polynomials of
degree 2 have finitely many geometric bottlenecks.

3 Computational examples

We conclude by discussing the results of some computations performed using our algorithms.

Figure 2: Geometric bottlenecks (red) with their closest points (green) for a quartic surface.

3.1 Quartic surface

Consider the quartic surface in R3 illustrated in Figure 2 and defined by

F = 4x4 + 7y4 + 3z4 − 3− 8x3 + 2x2y − 4x2 − 8xy2 − 5xy + 8x− 6y3 + 8y2 + 4y.

We computed the geometric 2-bottlenecks and geometric 3-bottlenecks (bottlenecks with 2 and 3
closest points) using our algorithm for finding a lower bound on the weak feature size. The lower
bound we computed was approximately 0.354 and was attained at the geometric 2-bottleneck.

3.2 Adaptive subsamples and persistent homology

Consider the following greedy subsampling framework in Algorithm 1 of Dey et al. [6, Alg. 1].

Example 3 (Uniform subsample). Let X be an algebraic manifold. We can compute ω < wfs(X)
via our NAG-based algorithm. For any λ ∈ [0, 1], define ωλ : Rn → R to be the constant function
given by ωλ(z) = λω. The output of Subsample(X̂, ωλ) is a “uniform subsample” of X̂.

3More precisely: general complete intersections.
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Algorithm 1: Subsample

Input : Sample X̂ ⊆ Rn and function s : X̂ → R
Output: A subsample of X̂

1 Put X̂ in a max priority queue sorted by s;
2 Set Output to ∅;
3 while The queue is not empty do
4 Add the highest priority x̂1 in the queue to Output and remove it from the queue;
5 Delete any point x̂2 from the queue where ∥x̂1 − x̂2∥ ≤ s(x̂1);

6 end
7 Return(Output)

Figure 3: Adaptive samples of the butterfly curve, lfs (left) and “lean feature size” (right). More
points are retained closer to the medial axis and “lean medial axis” (orange).

Example 4 (Local adaptive subsample). With lfs the local feature size function of X, for any
λ ∈ [0, 1], define lfsλ : Rn → R≥0 by lfsλ(z) = λ lfs(z). The output of Subsample(X̂, lfsλ) is an

“adaptive subsample” of X̂ with respect to lfs. In practice, we compute l̂fs(z) ≤ lfs(z).

Example 5 (Lean adaptive subsample). Let X̂ ⊆ Rn be a point sample. In [6, Def. 3], Dey et
al. define the π

5 -lean set of X̂, Lπ
5
, to be a subset of the set of midpoints {p+q

2 }p ̸=q∈X̂ that fulfills
other geometric conditions. The distance function dLπ

5
estimates the distance to a subset of MX .

For λ ∈ [0, 1] define lnfsλ : Rn → R≥0 by lnfsλ(z) = λdLπ
5
(z). The output of Subsample(X̂, lnfsλ)

is an adaptive subsample of X̂ with respect to the lean feature size.

We first computed dense samples of the “butterfly curve”, x4−x2y2+y4−4x2−2y2−x−4y+1 =
0, with density determined by homology inference theorems for persistent homology. We then
computed the required feature sizes (e.g., Figure 3) and formed subsamples using the Examples
above over a range of parameter values for λ. These subsamples were then used as input to compute
degree 1 persistent homology, and scores computed using the resulting persistence diagrams were
used to compare the three subsampling methods. The estimated lnfs-adaptive method performed
comparably to the lfs-adaptive “baseline”.

Figure 4: Computational results comparing the behavior of subsampling methods. Higher homology
inference scores, lower numbers of points, and lower Wasserstein indicate better performance.
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